Window

Elizabeth Burakowski, Danielle Grogan, Alix Contosta University of New Hampshire Land Model Working Group, Boulder, CO – Feb 13, 2019

Eirik Solheim - www.eirikso.com

What is the Vernal Window?

Snowmelt to Canopy Closure

Groffman et al. 2012 Creed et al. 2015 Contosta et al. 2017

Hubbard Brook snowpack disappears ~ 15 days earlier.

Earlier snowmelt lengthens the vernal window.

Hubbard Brook canopy closes ~ 7 days earlier.

An overall lengthening of the vernal window, by ${\sim}8$ days.

A longer vernal window could lead to phenological mismatches in timing of key energy, carbon, and water related ecosystem processes.

Energy: Snowmelt → Snow-free

picturepost.unh.edu

Carbon: Snow-free \rightarrow Budburst

During the snow-free period, soils thaw/warm up and heterotrophic respiration increases.

Carbon: Snow-free \rightarrow Budburst

Once budburst begins, ecosystem begins to take up carbon through photosynthesis.

Water: Snowmelt \rightarrow Peak streamflow

What will the vernal window look like in the future?

What will the vernal window look like in the future?

February 26, 2017 Kingman Farm, Durham, NH

Model Workflow

UNH Water Balance Model (WBM)

Wisser et al 2010; Grogan 2016

Historical (1981-2005) Northeastern US snow disappearance date: March 1st

Under RCP4.5, snow disappearance data advances two weeks earlier by 2010-2039.

Snow Disappearance Date

Apr 24

May 4

By mid-century, snow disappearance date is early February under RCP4.5.

Snow Disappearance Date

Snow disappears a month earlier by end of century under RCP4.5 compared to historical.

Snow Disappearance Date

Under RCP8.5, January is the new March for snow disappearance date.

Stabilization of snow disappearance date by end of century under RCP4.5.

Individual ensemble members demonstrate wide spread for each scenario.

Snow season ends about one month earlier under higher scenario.

Canopy green-up date advances 10 days under RCP4.5, relative to historical.

Green-Up Date

Under RCP8.5, green-up date advances 15 days earlier, relative to historical.

Canopy green-up occurs about a week earlier under RCP8.5 compared to RCP4.5

Vernal window lengthens three weeks under RCP4.5.

Vernal window lengthens three weeks under RCP4.5.

Vernal window lengthens three weeks under RCP4.5.

Vernal window lengthens almost five weeks under RCP8.5.

Flexibility in C uptake timing varies by vegetation

Sanders-DeMott, in prep

Key Points

Using ensemble of simple models, we find:

• Snow melts **one month earlier** under RCP4.5, and **two months earlier** under RCP8.5.

Key Points

Using ensemble of simple models, we find:

- Snow melts **one month earlier** under RCP4.5, and **two months earlier** under RCP8.5.
- Canopy green-up occurs ten days earlier under RCP4.5, and three weeks earlier under RCP8.5

Key Points

Using ensemble of simple models, we find:

- Snow melts **one month earlier** under RCP4.5, and **two months earlier** under RCP8.5.
- Canopy green-up occurs ten days earlier under RCP4.5, and three weeks earlier under RCP8.5
- Vernal window is **12 days** under RCP4.5, and **19 days longer** under RCP8.5

Next Steps

Repeat analysis with CLM5 simulations

Surface energy fluxes

Hydrology

Biogeochemistry

Vernal Window Projects

NSF Macrosystems Biology

Lead PI:

Elizabeth Burakowski Earth Systems Research Center (ESRC), Institute for Study of Earth, Oceans, and Space (EOS), University of New Hampshire (UNH)

Co-Pls:

Alexandra Contosta, ESRC, EOS-UNH Danielle Grogan, Water Systems Analysis Group, EOS-UNH

US Forest Service CitSci Fund

Institutional Lead PI: Elizabeth Burakowski, EOS-UNH

Forest Service Lead PI: John L. Campbell, Northern Research Station, US Forest Service

Co-Pls: Alix Contosta, EOS-UNH Rebecca Sanders-DeMott, EOS-UNH

NSF EPSCoR Track 4 Fellowship Elizabeth Burakowski

Thanks and Questions elizabeth.burakowski@unh.edu @LizBurakowski

Burakowski – ED34A-05 - Tracking the "Vernal Window"