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What is driving uncertainty in land surface model 
projections of climate change?
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CMIP3/C4MIP emulation with MAGICC6 is 811–
1170ppm. As discussed above, the lower range of the
CMIP5 ESMs is due to one single model, MRI-ESM1,
which already severely underestimates the present-day
atmospheric CO2 concentration. Not including this model
would mean that the lower end of the MAGICC6 range is
significantly lower than the lower end of theCMIP5ESMs.
The warming ranges simulated by the CMIP5 ESMs

and by the CMIP3/C4MIP model emulations are quite
similar (Figs. 2b and 2d). The first set of models displays
a full range of 2.58–5.68C, while the latter set has a 90%
probability range of 2.98–5.98C.

5. Twenty-first-century land and ocean carbon cycle

To further understand the difference in simulated
atmospheric CO2 over the twenty-first century, we
analyzed the carbon budget simulated by the models, as
already done for the historical period. In the E-driven
runs, the ESMs simulate the atmospheric CO2 concen-
tration as the residual of the prescribed anthropogenic

emissions minus the sum of the land and ocean carbon
uptakes—these latter two fluxes being interactively
computed by the land and ocean biogeochemical com-
ponents of the ESMs. Figure 4 shows the cumulative
land and ocean carbon uptakes simulated by the CMIP5
ESMs. Any difference in simulated atmospheric CO2

comes from differences in the land or ocean uptakes.
The models show a large range of future carbon up-

take, both for the land and for the ocean (Figs. 4a and
4b). However, for the ocean, 10 out of the 11 models
have a cumulative oceanic uptake ranging between 412
and 649PgC by 2100, the exception being INM-CM4.0
with an oceanic uptake of 861PgC. As discussed in the
historical section, the reasons for this large simulated
uptake are unknown. The simulated land carbon fluxes
show a much larger range, from a cumulative source of
165PgC to a cumulative sink of 758PgC. Eight models
simulate that the land acts as a carbon sink over the full
period. Land is simulated to be a carbon source by two
models, CESM1-BGC and NorESM1-ME, both sharing
the same land carbon cycle model, and byMIROC-ESM.

FIG. 4. Range of (a) cumulative global air to ocean carbon flux (PgC), (b) cumulative global air to land carbon flux
(PgC) from the 11ESMsE-driven simulations, (c) the annual global air to ocean carbon flux, and (d) annual global air
to land carbon flux. Color code for model types is as in Fig. 1.
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advances are needed, but theremay be a limit to
howmuchmodel uncertainty can be reduced (94).
More complexity does not necessarily lead to bet-
ter predictions or reduce uncertainty.
A second pathway is to better integrate ESMs

and VIA models. The gap between models arises
fromdisciplinary expertise (atmospheric and ocean
sciences for ESMs and hydrology, ecology, biogeo-
chemistry, agronomy, forestry, andmarine sciences
for VIA models), but effective communication
among, rather than across, disciplines is not trivial.
There are also pragmatic considerations, partic-
ularly with regard to spatial scale and process
complexity, that limit collaboration between global
ESMs and VIA models with a more local to re-
gional domain. However, just as the science of
Earth systemprediction is seen as ameans to unite
the weather and climatemodeling communities
(80,81), so, too, can the broadening ofEarth system
prediction to include the biosphere stimulate col-
laborations with the VIA community.
A third promising researchpathway is to expand

the concepts andmethodology of seasonal to dec-
adal climate prediction to include terrestrial and
marine ecosystems and to quantify prediction un-
certainty at spatial and temporal scales relevant
to stakeholders. The predictability of the terres-
trial carbon cycle can be considered from an eco-
logical perspective (97), but only recently has it
been considered in an Earth system perspective
of natural climate variability, the forced climate
response, and model uncertainty (92, 94). Anal-
ysis of natural variability, model uncertainty, and
scenario uncertainty is similarly informingmarine
biogeochemistry (87–90, 93). Whether the bio-
sphere is a source of climate predictability is not
necessarily the right question to pose. A more
fruitful research pathway may be to investigate
how to predict the biosphere and its resources
in a changing environment, as identified specif-
ically for marine living resources (96) and con-
sidered also for atmospheric CO2 (98). Initial
condition uncertainty and the difficulty in separat-
ing natural variability from the forced trend likely
produces irreducible uncertainty in climate pre-
diction (99). At the regional or biome scale, nat-
ural variability is large for the ocean and land

carbon cycles (89, 92, 93). Whether a similar ir-
reducible uncertainty manifests in terrestrial and
marine ecosystems remains to be explored.
With their terrestrial and marine ecosystems,

biogeochemical cycles, and simulation of plants,
microbes, and marine life, ESMs challenge ter-
restrial and marine ecologists and biogeochem-
ists to think in terms of broad generalizations
and to find the mathematical equations to de-
scribe the biosphere, its functioning, and its re-
sponse to global change. ESMs similarly challenge
geoscientists to think beyond a physical under-
standing of climate to include biology. Themodels
showmuch promise to advance our understand-
ing of global change but must move from the
synthetic world of an ESM toward the realworld.
Bridging the gap between observations and theory
as atmospheric CO2 rises, climate changes,more
nitrogen is added to the system, forests are cleared,
grasslands are plowed or converted to pastures,
coastal wetlands and coral reefs are degraded or
lost, andoceanswarmandare increasinglypolluted
poses challenging opportunities for the next gener-
ation of scientists to advance planetary ecology and
climate science.
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Fig. 4. Ocean and land carbon cycle
uncertainty. The percentage of total variance
attributed to internal variability, model
uncertainty, and scenario uncertainty in
projections of cumulative global carbon uptake
from 2006 to 2100 differs widely between
(A) ocean and (B) land. The ocean carbon cycle
is dominated by scenario uncertainty by the
middle of the century, but uncertainty in
the land carbon cycle is mostly from
model structure. Data are from 12 ESMs
using four different scenarios (94).
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What are the sources of uncertainty in land 
surface models?
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Hand-tuning 
parameter values 
takes a long time 
(many model runs, 
trial and error).

How can we 
speed this 
process up?

The Game of Climate Model Biases 

Find new study: 
update old, wrong 
parameter value 

Add new structure to 
account for new knowledge 

Two alternative 
algorithms for poorly 
understood process.  

Different but-still-
reasonable value 
gives better answers 

Use value 
calibrated at 
single site. 

Figure from Rosie Fisher

Can we use machine learning to emulate land 
surface model behavior?
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1. Build and train a series of neural networks to predict 
CLM output, given parameter values as input.

2. Inflate ensemble size of possible parameter 
combinations using trained networks.

3. Compare network predictions with observations to 
estimate best fit parameter values.

Machine Learning Goals
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Network image: https://www.learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/

Machine learning by neural networks
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Machine learning by neural networks

Network image: http://cs231n.github.io/neural-networks-1/
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Machine learning by neural networks
Neurons or nodesWeights (importance of inputs)

Activations (e.g., linear, nonlinear)

Parameter 
values

CLM 
output
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Neural networks for climate emulation

A similar process is conducted for the prediction of
w ik: to measure the prediction ability of the network,
we predict the K principal components for each mem-
ber of the verification set. The prediction error is root-
mean-square difference between the neural network es-
timation and the actual value in the verification set. We
measure the smoothness of the response surface by tak-
ing the root-mean-square response to a small param-
eter perturbation, as before. Again, six neurons are ap-
propriate for predicting w ik.

The cost function used in the iterating training pro-
cedure measures network performance as a combina-
tion of the mean squared prediction error (85%) and
the mean squared weight and bias values (15%). This
prevents any single neuron from being weighted too
highly, which was found to further help prevent the
network from overfitting.

Once the network has been trained and verified, we
perform a Monte Carlo parameter perturbation experi-
ment, emulating an ensemble many orders of magni-
tude greater than the original climateprediction.net
dataset. The ensemble densely samples the emulated
parameter space, allowing a search for the best-
performing models in different (0.1 K) bins of climate
sensitivity, as judged by various observational con-
straints.

The underlying function of minimized model–
observation error as a function of sensitivity E (S) is
thus discretized into 0.1-K bins of S. The Monte Carlo
ensemble is sufficiently densely populated so that the
following statements are true:

• E (S) is a smooth, continuous function.
• E (S) does not alter if the sampling density is further

increased.

Note that the issues of prior sampling of climate sen-
sitivity raised in Frame et al. (2005) are not relevant
here, because we do not attempt to assign probabilities
to different values of S. The sampling of S is simply
used to outline the shape of the underlying func-
tion E (S).

3. Results

a. Verification

We first show a demonstration of the ability of the
neural network to predict an unseen verification set
within the ensemble itself. Figure 4a illustrates the net-
work’s ability to predict S. Figure 4b shows that the
standard error in prediction increases with increasing
sensitivity, an effect also noted both in Piani et al.
(2005) and Knutti et al. (2006). This is simply explained
by considering that observables tend to scale with !, the
inverse of S. Although in practice, a direct prediction of
S with the neural network is considerably more accu-
rate than a linear prediction of ! for large values of S.

The network must be able to predict model climatol-
ogy for previously unseen parameter combinations.
Figure 5 uses the verification set to demonstrate the
network’s ability to predict the total RMSE from ob-
servations for each of the different observation types.

FIG. 4. (a) A plot showing the predicted sensitivities of the verification set of climateprediction.net models as a
function of their actual sensitivities. (b) A plot of the prediction error in S as a function of S. Each point represents
a member of the verification set in the climateprediction.net ensemble and the width between lines represents the
standard error in prediction at a given climate sensitivity.
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Sanderson et al. (2008)

network with optimal performance at minimal computational cost.
A short introduction to neural networks, the discussion of a few
general properties and the choice of an appropriate network size
and training set are discussed in Appendix 2.

The main advantage of neural networks compared to other
methods is that any relationship between input parameters and
output data can be approximated. Even thresholds or qualitatively
different behaviour in different parts of the parameter space can be
modelled. Further, the training simulations can be randomly dis-
tributed in the parameter space. For regular sampling methods like
the latin hypercube sampling (Forest et al. 2002), it is often difficult
to know in advance the number of simulations that is required to
get a good approximation to the original model. In contrast to
these methods, the number of randomly distributed simulations
used to train the neural network can be increased continuously
until the performance of the neural network is sufficient.

The neural network-based climate model substitute is two to
three orders of magnitude faster than the climate model used here.
Even when considering the cost of calculating a training set, the
neural network ensemble method is an order of magnitude or two
more efficient (depending on the ensemble size and the size of the
training set) and also more flexible than calculating the ensemble
explicitly with the climate model. For example, the a priori
assumptions for the uncertainties can be changed easily to inves-
tigate sensitivities, without recalculating the training set or
retraining the network.

To summarize, the ensemble procedure including the neural
network substitute is sketched in Fig. 1b. First, a priori probabil-
ities for the errors and uncertainties have to be assumed. Second, a
set of 1000 simulations is calculated by varying the uncertainties
randomly. Third, the neural network is designed and trained using
half of the simulations for training and the rest for independent
validation. Fourth, the actual ensemble is generated using the
neural network to predict the climate response from the uncertainty
parameters. Those simulations consistent with observations are
selected to calculate an a posteriori probability density function of
whatever quantity is desired. The ensemble size is continuously
increased until the PDF is stationary. For all the results presented,
the initial unconstrained ensemble encompasses at least 106

ensemble members generated by the neural network. The proba-
bility density functions obtained can therefore be considered as
stationary with a high degree of accuracy.

2.5 Model and neural network performance

The performance of the climate model as well as the neural network
substitute is shown in Fig. 2. The plotted simulation is randomly
chosen for illustration among those simulations which are consis-
tent with the observations. In general, surface warming calculated
from the climate models (solid) agrees well with observations
(shaded band, data from Jones et al. 1999). Both the trend and
most of the decadal variations are reproduced. However, some
features like the almost constant temperatures between 1940 and
1970 and the strong warming after 1980 are not well reproduced,
indicating that either the external forcing is not entirely correct or
that part of the observed warming is due to internal processes. For
the ocean heat uptake over the last 40 years, only the trend of the
data (Levitus et al. 2000) can be reproduced, very similar to results
obtained by comprehensive models (Barnett et al. 2001; Reichert
et al. 2002). Even the most complex models are currently not able
to simulate such observed internal variability, e.g. caused by the
El Niño-Southern Oscillation (Levitus et al. 2001; Barnett et al.
2001; Reichert et al. 2002).

The performance of the neural network in approximating the
climate model response is also illustrated by the simulation shown
in Fig. 2. The approximated response from the trained neural
network (dashed) agrees very well with the explicit climate model
simulation (solid). The error of the neural network is negligible
compared to the uncertainties related to the model setup, param-
eters and input data, and the deviations of the neural network are
not systematic.

3 Results

3.1 Climate sensitivity

The climate sensitivity for ocean–atmosphere models is
commonly expressed as the equilibrium surface air
temperature increase for a doubling of the preindustrial
atmospheric CO2 concentration, and varies considerably
between different models (IPCC 2001). For compre-
hensive coupled atmosphere ocean general circulation
models (AOGCM), the climate sensitivity is internally
determined by physical, chemical and biological (feed-
back) processes and by the way they are parameterized
in the model. Our incomplete knowledge of the cloud
feedbacks in particular contributes to the large uncer-
tainty in climate sensitivity. The most recent assessment
by the IPCC (2001) confirmed the range of 1.5 to 4.5 K
established in earlier studies (Shine et al. 1995), without
indicating any statistical interpretation of that range.

It has recently been suggested that the largely
uncertain climate sensitivity can be constrained by
relating the reconstructed radiative forcing over the
industrial period to the observed surface air warming
and the observed ocean heat uptake. The requirement
that the modelled warming matches the observed
warming should thus place a strong constraint on
anthropogenically forced climate models, and the ocean
heat uptake should impose an even tighter restriction

Fig. 2 a Surface warming and b ocean heat uptake simulated by the
climate model (solid) and approximated by the trained neural
network (dashed) over the observational period. The simulation
shown here is randomly chosen for illustration among those
matching the observational constraints. One standard deviation of
the observations are shown as shaded bands for the reconstructed
global mean surface warming (Jones et al. 1999) and for the global
ocean heat uptake (Levitus et al. 2000). Note that the time axes are
not identical

Knutti et al.: Probabilistic climate change projections using neural networks 261

Knutti et al. (2003)

climate model
neural network
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• Perturbed parameter ensemble (PPE) using 100 randomly sampled 
values from uncertainty ranges for 6 biophysical parameters

Name Biophysical parameter description
medlynslope Slope of stomatal conductance-photosynthesis relationship

dleaf Leaf boundary layer resistance parameter

kmax Plant hydraulic stress parameter

dsl Soil evaporation parameter

f_over Surface runoff parameter

baseflow_scalar Sub-surface runoff parameter



CLM5 Perturbed Parameter Ensemble
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• Perturbed parameter ensemble (PPE) using 100 randomly sampled 
values from uncertainty ranges for 6 biophysical parameters

• CLM5SP, 4°x5° resolution, 20 year runs (sample last 5 years)
• Land model forced by GSWP meteorological data



CLM5 Perturbed Parameter Ensemble
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• Perturbed parameter ensemble (PPE) using 100 randomly sampled 
values from uncertainty ranges for 6 biophysical parameters

• CLM5SP, 4°x5° resolution, 20 year runs (sample last 5 years)
• Land model forced by GSWP meteorological data

• Begin training neural network on output from 100 PPE simulations



Begin training on simple global mean metric
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Distribution of global mean gross primary 
productivity (GPP, µmol m-2s-1)
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Build and train a neural network to predict land 
model output based on parameter values
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Input (100 parameter 
sets; 6 parameters)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

Build and train a neural network to predict land 
model output based on parameter values
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Input (100 parameter 

sets; 6 parameters)

Output (100 CLM 

simulations)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

S100 x100,1 x100,2 x100,3 x100,4 x100,5 x100,6

Distribution of 

global mean GPP 
(µmol m-2s-1)

Build and train a neural network to predict land 

model output based on parameter values
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Training Process

• Subset the data into 
training and validation sets

• Test different network 
configurations (neurons, 
layers, activations) 

• Resample training data to 
avoid overfitting

• Assess performance 
based on overall fit

r2 = 0.79

Predicted vs. Actual Global Mean GPP (µmol m-2s-1)



Assessing network performance
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r2 = 0.91

Network predicted vs. land 
model global mean GPP 
(µmol m-2s-1)
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Climate model emulation

Input (1000 parameter 
sets; 6 parameters)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

… … … … … … …

S1000 x1000,1 x1000,2 x1000,3 x1000,4 x1000,5 x1000,6

Increase the ensemble 
size from 100 to 1000 
parameter values.
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Climate model emulation

Run through trained neural networkInput (1000 parameter 
sets; 6 parameters)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

… … … … … … …

S1000 x1000,1 x1000,2 x1000,3 x1000,4 x1000,5 x1000,6



K. Dagon2/11/19 21

Climate model emulation

Run through trained neural networkInput (1000 parameter 
sets; 6 parameters)

Output (1000 neural 
network predictions)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

… … … … … … …

S1000 x1000,1 x1000,2 x1000,3 x1000,4 x1000,5 x1000,6

Distribution of 
global mean GPP
(µmol m-2s-1)
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Climate model emulation

Run through trained neural networkInput (1000 parameter 
sets; 6 parameters)

Output (1000 neural 
network predictions)

P1 P2 P3 P4 P5 P6

S1 x1,1 x1,2 x1,3 x1,4 x1,5 x1,6

S2 x2,1 x2,2 x2,3 x2,4 x2,5 x2,6

S3 x3,1 x3,2 x3,3 x3,4 x3,5 x3,6

… … … … … … …

… … … … … … …

S1000 x1000,1 x1000,2 x1000,3 x1000,4 x1000,5 x1000,6

Distribution of 
global mean GPP
(µmol m-2s-1)

Emulated CLM output! How good are 
these predictions? Can we use them to 
constrain parameter values?



Comparing with observations
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Distribution of global 
mean GPP (network 
predictions, n=1000)
(µmol m-2s-1)

Observational estimate 
from FluxNet MTE GPP
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Isolate the emulator 
prediction closest to 
observations.

Parameter estimation

Observational estimate 
from FluxNet MTE GPPDistribution of global 

mean GPP (network 
predictions, n=1000)
(µmol m-2s-1)

This gives an estimate of 
“best fit” parameter values.
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Isolate the emulator 
prediction closest to 
observations.

Parameter estimation

Observational estimate 
from FluxNet MTE GPPDistribution of global 

mean GPP (network 
predictions, n=1000)
(µmol m-2s-1)

This gives an estimate of 
“best fit” parameter values.

Ø What happens if we run 
CLM with these parameter 
values?



Testing the emulator
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Observations CLM with emulator “best fit” 

parameter values

Distribution of global 

mean GPP (network 

predictions, n=1000)

(µmol m-2s-1)

Emulator closest 

fit to obs
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CLM with default 
parameter values

Making progress!

Distribution of global 
mean GPP (network 
predictions, n=1000)
(µmol m-2s-1)

Observations CLM with emulator “best fit” 
parameter values



Regional performance needs improvement
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CLM with emulator “best fit” parameters 
minus Observations

CLM with default parameters 
minus Observations

GPP (µmol m-2s-1)



Regional performance needs improvement
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GPP (µmol m-2s-1)

GPP too low 
in the Amazon

GPP too high 
in the Sahel

CLM with emulator “best fit” parameters 
minus Observations

CLM with default parameters 
minus Observations
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Observations
“Best fit” parameters
Default parameters

GPP too low in the Amazon; 
emulator overcompensates

GPP too high in the Sahel; emulator 
has small effect but in the right direction

Regional performance needs improvement



What are the parameters doing?
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Parameter Scaling factor Difference from default value
Stomatal conductance 
slope 0.94 All PFTs higher than default 

(avg 56% increase)

Leaf resistance 0.86 Generally higher than default 
(avg 68% increase)

Plant hydraulic stress 0.32 32% decrease

Soil evaporation 0.55 3% decrease

Surface runoff 0.53 429% increase

Sub-surface runoff 0.06 575% increase

min max

Default value is not necessarily centered!

Uncertainty range

0 1
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Distribution of global 
mean GPP (network 
predictions V2)
(µmol m-2s-1)

Observations

Try a different set of parameters

Isolate the emulator 
prediction closest to 
observations based 
on this distribution.
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CLM with default 
parameter values

ObservationsCLM with second set of emulator 
selected parameters

Try a different set of parameters

Distribution of global 
mean GPP (network 
predictions V2)
(µmol m-2s-1)



Try a different set of parameters
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Parameter Scaling factor 
(Set 1)

Scaling factor 
(Set 2)

Stomatal conductance slope 0.94 0.75

Leaf resistance 0.86 0.05

Plant hydraulic stress 0.32 0.18

Soil evaporation 0.55 0.67

Surface runoff 0.53 0.19

Sub-surface runoff 0.06 0.19

min max
Uncertainty range

0 1

Second parameter set is sampling from very different parts of the uncertainty ranges.



Check in on the regional effect
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GPP (µmol m-2s-1)

CLM with emulator-selected parameters 
minus Observations

CLM with default parameters 
minus Observations
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Check in on the regional effect

Observations
1st parameter fit
2nd parameter fit
Default parameters



Next steps
• Assess multiple metrics (e.g., mean and spatial variability)
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r2 = 0.95

Predicted vs. Actual GPP 
Variability

Distribution of first 
mode of GPP variability



Next steps
• Assess multiple metrics (e.g., mean and spatial variability)
• Use multiple observational datasets to span observational uncertainty
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Observations



Next steps
• Assess multiple metrics (e.g., mean and spatial variability)
• Use multiple observational datasets to span observational uncertainty
• Use multiple neural network configurations to span prediction uncertainty
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Next steps
• Assess multiple metrics (e.g., mean and spatial variability)
• Use multiple observational datasets to span observational uncertainty
• Use multiple neural network configurations to span prediction uncertainty
• Apply uncertainty framework to different models/model configurations
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What is FATES?
• Vegetation model, which replaces the 
unstructured bulk canopy representation in CLM 
with the size‐ and age‐structured ED 
approximation of individual plant dynamics

• Modularized from CLM(ED) in order to: plug into 
multiple land models (CLM, ACME); and to more 
cleanly separate demographic from other code 

“Big‐Leaf” vegetation Demographic Vegetation

FATES



Summary
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Questions?

Thanks!
Contact: kdagon@ucar.edu

• We can reduce uncertainty in land surface models by 
studying parameters.

• Machine learning can help in climate model emulation.
• CLM emulator used to estimate parameter values by 

comparing with observations.


