Machine Learning for Parameter Estimation in CLM5

Katie Dagon NCAR ASP Postdoc

Land Model Working Group Meeting February 11, 2019

With input and assistance from: Rosie Fisher, Dave Lawrence, Ben Sanderson, and the LMWG

What is driving uncertainty in land surface model projections of climate change?

K. Dagon

What are the sources of uncertainty in land surface models?

on Lovenduski and Bonan (2017)

K. Dagon

Can we use machine learning to emulate land surface model behavior?

Hand-tuning parameter values takes a long time (many model runs, trial and error).

How can we speed this process up?

Machine Learning Goals

- 1. Build and train a series of neural networks to predict CLM output, given parameter values as input.
- 2. Inflate ensemble size of possible parameter combinations using trained networks.
- 3. Compare network predictions with observations to estimate best fit parameter values.

Machine learning by neural networks

Network image: https://www.learnopencv.com/neural-networks-a-30000-feet-view-for-beginners/

Machine learning by neural networks

Network image: http://cs231n.github.io/neural-networks-1/

Machine learning by neural networks

Neural networks for climate emulation

Knutti et al. (2003)

Sanderson et al. (2008)

CLM5 Perturbed Parameter Ensemble

 Perturbed parameter ensemble (PPE) using 100 randomly sampled values from uncertainty ranges for 6 biophysical parameters

Name	Biophysical parameter description
medlynslope	Slope of stomatal conductance-photosynthesis relationship
dleaf	Leaf boundary layer resistance parameter
kmax	Plant hydraulic stress parameter
dsl	Soil evaporation parameter
f_over	Surface runoff parameter
baseflow_scalar	Sub-surface runoff parameter

CLM5 Perturbed Parameter Ensemble

- Perturbed parameter ensemble (PPE) using 100 randomly sampled values from uncertainty ranges for 6 biophysical parameters
- CLM5SP, 4°x5° resolution, 20 year runs (sample last 5 years)
 - Land model forced by GSWP meteorological data

CLM5 Perturbed Parameter Ensemble

- Perturbed parameter ensemble (PPE) using 100 randomly sampled values from uncertainty ranges for 6 biophysical parameters
- CLM5SP, 4°x5° resolution, 20 year runs (sample last 5 years)
 - Land model forced by GSWP meteorological data
- Begin training neural network on output from 100 PPE simulations

Begin training on simple global mean metric

Distribution of global mean gross primary productivity (GPP, µmol m⁻²s⁻¹)

K. Dagon

Build and train a neural network to predict land model output based on parameter values

Build and train a neural network to predict land model output based on parameter values

Build and train a neural network to predict land model output based on parameter values

Training Process

- **Subset** the data into training and validation sets
- **Test** different network configurations (neurons, layers, activations)
- Resample training data to avoid overfitting
- Assess performance
 based on overall fit

Predicted vs. Actual Global Mean GPP (µmol m⁻²s⁻¹)

Assessing network performance

K. Dagon

		sets; 6 parameters)						
		F	P1	P2	P3	P4	P5	P6
	S1	x1,7	1	x1,2	x1,3	x1,4	x1,5	x1,6
	S2	x2,7	1	x2,2	x2,3	x2,4	x2,5	x2,6
	S3	x3,7	1	x3,2	x3,3	x3,4	x3,5	x3,6
	S1000	x10	00,1	x1000,2	x1000,3	x1000,4	x1000,5	x1000,6

Input (1000 parameter

Increase the ensemble size from 100 to 1000 parameter values.

	P1	P2	P3	P4	P5	P6
S1	x1,1	x1,2	x1,3	x1,4	x1,5	x1,6
S2	x2,1	x2,2	x2,3	x2,4	x2,5	x2,6
S3	x3,1	x3,2	x3,3	x3,4	x3,5	x3,6
S1000	x1000,1	x1000,2	x1000,3	x1000,4	x1000,5	x1000,6

Input (1000 parameter

sets; 6 parameters)

Run through trained neural network

Emulated CLM output! How good are these predictions? Can we use them to constrain parameter values?

Comparing with observations

Parameter estimation

Parameter estimation

Testing the emulator

Making progress!

Regional performance needs improvement

Regional performance needs improvement

K. Dagon

Regional performance needs improvement

What are the parameters doing?

Parameter	Scaling factor	Difference from default value	
Stomatal conductance slope	0.94	All PFTs higher than default (avg 56% increase)	
Leaf resistance	0.86	Generally higher than default (avg 68% increase)	
Plant hydraulic stress	0.32	32% decrease	
Soil evaporation	0.55	3% decrease	
Surface runoff	0.53	429% increase	
Sub-surface runoff	0.06	575% increase	

Try a different set of parameters

Isolate the emulator prediction closest to observations **based on this distribution**.

Try a different set of parameters

Try a different set of parameters

Parameter	Scaling factor (Set 1)	Scaling factor (Set 2)	
Stomatal conductance slope	0.94	0.75	
Leaf resistance	0.86	0.05	
Plant hydraulic stress	0.32	0.18	
Soil evaporation	0.55	0.67	
Surface runoff	0.53	0.19	
Sub-surface runoff	0.06	0.19	

K. Dagon

Check in on the regional effect

Check in on the regional effect

K. Dagon

Assess *multiple metrics* (e.g., mean and *spatial variability*)

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty
- Use multiple neural network configurations to span *prediction uncertainty*

- Assess multiple metrics (e.g., mean and spatial variability)
- Use multiple observational datasets to span observational uncertainty
- Use multiple neural network configurations to span prediction uncertainty
- Apply uncertainty framework to *different models/model configurations*

Summary

- We can reduce uncertainty in land surface models by studying parameters.
- Machine learning can help in climate model emulation.
- CLM emulator used to **estimate parameter values** by comparing with observations.

Questions?

Thanks! **Contact:** kdagon@ucar.edu