BIOMASS PARTITIONING USING AN OPTIMIZATION APPROACH FROM ECONOMIC THEORY

BETH DREWNIAK

Assistant Climate Scientist Environmental Science Division bbye@anl.gov

MIQUEL GONZALEZ-MELER DOUGLAS LYNCH
Professor in Global Change Biology University of Illinois at Chicago University of Illinois at Chicago

MOTIVATION AND BACKGROUND

- Optimal partitioning theory: plants allocate biomass to most limiting resource
- Most LSMs used fixed ratios for biomass partitioning

PARALLELS BETWEEN ECOLOGY AND ECONOMICS

- Bloom et al., 1985:
- Plants acquire resources when they are cheap and store them for later use
- Plants produce roots and leaves until they cannot benefit from further growth of that component
- Plants adjust allocation such that growth limitation is equal for all resources
- Plants adjust phenology to changes in resources

COBB-DOUGLAS PRODUCTION FUNCTION

$$
Y=K^{\alpha} L^{\beta}
$$

- Currency for plants can be carbon, nitrogen, water, etc.
- The Caveat:

This is a first order highly simplified approach - a proof-of-concept
Two resources: carbon and nitrogen
Two plant components: leaves and fine roots
Solve for fine root:leaf ratio

CARBON PARTITIONING WITH COBB-DOUGLAS EQUATIONS

$$
P\left(u_{s}, u_{r}\right)=\pi_{C}^{\alpha} \pi_{N}{ }^{\beta} \ldots \pi_{x}{ }^{\lambda}
$$

$\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$ are fixed based on CN ratios in the model $\boldsymbol{\alpha}+\boldsymbol{\beta}=1$

Goal: Optimize NPP. Inputs: carbon and nitrogen.

$$
\begin{aligned}
& \pi_{C}=H_{C}\left(u_{s}\right)-c_{C}\left(u_{s}\right)-c_{C}\left(u_{r}\right) \\
& \pi_{N}=\sum_{j=1}^{m} H_{j N}\left(u_{r}\right)-c_{N}\left(u_{s}\right)-c_{N}\left(u_{r}\right)
\end{aligned}
$$

π is the harvest of carbon or nitrogen

Must follow the law of diminishing returns

$$
\frac{\partial P_{\left(u_{l}, u_{r}\right)}}{\partial u_{l}}=\frac{\partial P_{\left(u_{l}, u_{r}\right)}}{\partial u_{r}}=0 \quad \begin{aligned}
& \text { Solver uses Newton-Raphson with a finite } \\
& \text { difference approximation for the derivative }
\end{aligned}
$$

EXAMPLE OF SINGLE RESOURCE

Lynch, 2015

EXAMPLE OF MULTIPLE RESOURCES

McNickel et al., 2016

DYNAMIC ALLOCATION, UPDATED ANNUALLY (GRASS EXAMPLE)

- $H_{c}(l)=G P P p_{o t} *\left(1-e^{-l}\right)$
- $c c(l)=l *(m r+g r)$
- cc(fr) $=f r *(m r+g r)$
- $H_{n}(f r)=$ Nallocp $_{o t} *\left(1-e^{-f r}\right)$
- cn $(l)=(m r+g r) *(l /$ leafcn $)$
- $c n(f r)=(m r+g r) *(f r / f r o o t c n)$

RAN THE SIMULATION IN POINT MODE AT 30 FLUXNET2015 SITES IN ELM

30 sites

14 countries
11 PFTs (6 mixes sites)
DCA: dynamic carbon allocation model

CONTROL: default fixed allocation model

http://fluxnet.fluxdata.org/data/fluxnet2015-dataset/

FINE ROOT:LEAF RATIO ARE DEPENDENT ON PHENOLOGY TYPE

| Phenology | Fine Root:Leaf Ratio
 Average | Fine Root:Leaf
 Range |
| :--- | ---: | ---: | ---: |
| Evergreen | 0.96 | $0.51-2.18$ |
| Seasonal
 Deciduous | 0.37 | $0.16-0.55$ |
| Stress
 Deciduous | 0.41 | $0.34-0.51$ |

GENERAL IMPACTS ON GPP

EXAMPLE 1: DCA MODELED GPP INCREASE

DE-Tha Site:
Evergreen Needleleaf Temperate

Fine Root:Leaf 0.51

EXAMPLE 2: DCA MODELED GPP DECREASE

IT-Lav Site:
Evergreen Needleleaf Boreal

Fine Root:Leaf 2.18

EXAMPLE 3: DCA MODELED GPP INCREASE

TAYLOR DIAGRAM OF GPP SHOWS IMPROVEMENT IN SD BUT NOT CORRELATION

SUMMARY

Fine root:leaf ratios vary with PFT:
Evergreen phenology has highest fine root:leaf ratios (i.e., N limited).
Deciduous phenology has lowest fine root:leaf ratios (i.e., C limited).
DCA simulated increases in GPP at all sites with fine root:leaf ratio <1
DCA simulated decreases in GPP at all sites with fine root:leaf ratio >1
Changes in fine root:leaf ratio have stronger impact on evergreen than deciduous PFTs.
Standard deviation of the DCA model is closer to observations than CONTROL for most ecosystems
DCA model correlation with observations is unchanged compared with the CONTROL

CONCLUSIONS

The Cobb-Douglas dynamic carbon allocation model shows promise for including a dynamic approach to carbon partitioning in ESMs.

In the future

- The Cobb-Douglas algorithm should consider woody tissue (stem and coarse roots)
- Water, phosphorus, and distinguishing the nitrogen species of nitrate and ammonium should be included the Cobb-Douglas equation
- Test alternate solvers
- Test alternate equations of harvest and cost
- Bring in competition - game theory

THANK YOU

QUESTIONS?

