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MOTIVATION: High-elevation forests represent a major fraction of the 

potential carbon sink in the Western U.S.

Total vegetation carbon (from NASA’s Carbon Mapper webpage: https://cmsun.jpl.nasa.gov)

• At the same time, these ecosystems are vulnerable to drought, wildfires, and 

insect outbreaks (more to come with climate change)

• Despite their relevance, these ecosystems are typically “neglected” (complex 

terrain issues) 
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NASA Carbon Monitoring System (CMS) Project
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Problem

• CLM4.5 and many other LSMs heavily underestimate 

carbon stocks and fluxes in the western U.S. 

• Big disparity between model state and observations 

complicates data assimilation efforts

• In general, model errors may arise from numerous 

sources, including model structure and parameterization, 

initial and boundary conditions, and external forcing

• In this study we focus on meteorological forcing
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Questions

• To what extent is the biomass underestimation in the 

western U.S. related to meteorological forcing?

• Can we improve the simulation of biomass in the western 

U.S. by using more accurate meteorological forcing 

datasets?

• We ran CLM4.5 with CRU-NCEP and 4 alternative 

meteorological datasets to investigate these questions



Methods

• Model configuration

• CLM4.5-CN

• Inactive fire

• Original PFT parameters

• Customized 0.2ox0.2o surface map, UT+CO domain

• Simulations

• Pre-industrial spin-up & 1850--2009 transient run, cycling 1980-

2009 meteorology

• 5 complete simulations (spin-up+TR), one for each meteorological 

forcing product

• CLM4.5-SP runs also conducted (fixed vegetation state) to assess 

the impact of meteorological forcing on potential GPP
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Dataset Grid Frequency Coverage Notes

CRU-NCEP

(default forcing)

0.5ox0.5o 6 hourly 1901--2010, global CRU TS3.2 climatology (monthly, 0.5ox0.5o) + 

NCEP/NCAR Reanalysis 1 (6 hourly, 2.5ox2.5o)

MERRA-Wang

(Wang et al. 2016)

0.5ox0.5o hourly 1979—2009, global Based on NASA GMAO MERRA (hourly, 

0.5ox0.33o); Precipitation is bias-corrected based 

on GPCP 2.2 (monthly, 2.5ox2.5o; Adler et al. 2003)

ERA-Wang

(Wang et al. 2016)

0.5ox0.5o 3 hourly 1979—2009, global Based on ECMWF ERA-Interim (3 hourly, 

~0.75ox0.75o); Precipitation is bias-corrected 

based on GPCP 2.2 (monthly, 2.5ox2.5o; Adler et 

al. 2003)

CFSR-Wang

(Wang et al. 2016)

0.5ox0.5o 6 hourly 1979—2009, global Based on NCEP CFSR (6 hourly, 0.5ox0.5o); 

Precipitation is bias-corrected based on GPCP 

2.2 (monthly, 2.5ox2.5o; Adler et al. 2003)

NARR-MsTMIP

(Wei et al. 2014)

0.25ox0.25o 3 hourly 1979—2010, North 

America

Based on NCEP NARR (3 hourly, 32 km); 

Precipitation is bias-corrected based on GPCP 

2.1 (monthly, 2.5ox2.5o; Adler et al. 2003); Incident 

shortwave radiation is bias-corrected based on 

MT-CLIM 4.3 (Thornton & Running 1999) 

estimates using daily max and min air temperature 

and daily precipitation (bias-corrected).

Product created for the Multi-Scale Synthesis and 

Terrestrial Model Intercomparison Project (MsTMIP; 

Huntzinger et al. 2013)

Global and regional meteorological datasets used as drivers
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Met data (1980-2009) averaged over high-elevation grid cells*

* z > 2235 m

75% of total AGB

(NBCD2000 product,

Kellndorfer et al., 2013)

Incident shortwave radiation Precipitation

Specific humidityAir temperature
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Mean bias errors (1998-2007) at the Niwot Ridge site

Niwot Ridge AmeriFlux Tower
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Simulated above-ground biomass (AGB), year 2000

Obs.

Total AGB values

z* = 2235 m

Obs.

0.06

0.26

0.15
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Simulated above-ground biomass (AGB), year 2005

Niwot Ridge site

Niwot Ridge AmeriFlux Tower

Point-level CLM4.5-CN simulations

based on Raczka et al. (2016)
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CLM4.5-SP results (1980-2009), averaged over high-elevation grid cells

Potential GPP Soil moisture stress factor Leaf RH

Leaf temperature 2-m air temperature Soil temperature (10 cm)



Conclusions

• Simulation of AGB in UT+CO is highly sensitive to the met forcing 

product used (0.06—0.26 Pg C)

• Fundamental restriction on plant growth in UT+CO is linked to 

summer water stress, exacerbated by positive biases in SW and 

negative biases in Precip

• CLM performance greatly improves with NARR-MsTMIP forcing (both 

biases are minimized)

• At high elevations, AGB more than doubled in comparison with CRU-

NCEP simulation
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Using more accurate met datasets with smaller biases is a direct, effective, and 

justifiable way to improve model performance.



Recent developments & future work

• Significant boost in AGB in the western U.S. after using high-

resolution (4x4km) met forcing and surface maps and species-specific 

PFTs with unique parameters (and other CLM4.5 mods)

• Contribution from met forcing alone is yet to be determined

• We plan to build upon this work to improve our prior simulations 

before DA
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CLM4.5-CN results at Niwot Ridge

(average over first five simulation years after initialization)

Gross primary production

Stomatal conductance Soil moisture stress factor

Net primary production

Leaf RH


