How Can Biosphere Models Grow Enough Vegetation Biomass in the Mountains of Western United States? Implications of Meteorological Forcing

Henrique Duarte¹, Brett Raczka², David Bowling^{1,2}, Aihui Wang³, John Lin¹

¹Department of Atmospheric Sciences, University of Utah

²School of Biology, University of Utah

³Institute of Atmospheric Physics, Chinese Academy of Sciences

2019 CESM Land Model and Biogeochemistry Working Group Meetings

MOTIVATION: High-elevation forests represent a major fraction of the potential carbon sink in the Western U.S.

Total vegetation carbon (from NASA's Carbon Mapper webpage: https://cmsun.jpl.nasa.gov)

- At the same time, these ecosystems are vulnerable to drought, wildfires, and insect outbreaks (more to come with climate change)
- Despite their relevance, these ecosystems are typically "neglected" (complex terrain issues)

NASA Carbon Monitoring System (CMS) Project

Problem

- CLM4.5 and many other LSMs <u>heavily</u> underestimate carbon stocks and fluxes in the western U.S.
- Big disparity between model state and observations complicates data assimilation efforts
- In general, <u>model errors may arise from numerous</u> <u>sources</u>, including model structure and parameterization, initial and boundary conditions, and external forcing
- In this study we focus on meteorological forcing

Questions

- To what extent is the biomass underestimation in the western U.S. related to meteorological forcing?
- Can we improve the simulation of biomass in the western U.S. by using more accurate meteorological forcing datasets?
- We ran CLM4.5 with CRU-NCEP and 4 alternative meteorological datasets to investigate these questions

Methods

- Model configuration
 - CLM4.5-CN
 - Inactive fire
 - Original PFT parameters

- Customized 0.2°x0.2° surface map, UT+CO domain
- Simulations
 - Pre-industrial spin-up & 1850--2009 transient run, cycling 1980-2009 meteorology
 - 5 complete simulations (spin-up+TR), one for each meteorological forcing product
 - CLM4.5-SP runs also conducted (fixed vegetation state) to assess the impact of meteorological forcing on potential GPP

Global and regional meteorological datasets used as drivers

Dataset	Grid	Frequency	Coverage	Notes
CRU-NCEP (default forcing)	0.5°x0.5°	6 hourly	19012010, global	CRU TS3.2 climatology (monthly, 0.5°x0.5°) + NCEP/NCAR Reanalysis 1 (6 hourly, 2.5°x2.5°)
MERRA-Wang (Wang et al. 2016)	0.5°x0.5°	hourly	1979—2009, global	Based on NASA GMAO MERRA (hourly, 0.5°x0.33°); Precipitation is bias-corrected based on GPCP 2.2 (monthly, 2.5°x2.5°; Adler et al. 2003)
ERA-Wang (Wang et al. 2016)	0.5°x0.5°	3 hourly	1979—2009, global	Based on ECMWF ERA-Interim (3 hourly, ~0.75°x0.75°); Precipitation is bias-corrected based on GPCP 2.2 (monthly, 2.5°x2.5°; Adler et al. 2003)
CFSR-Wang (Wang et al. 2016)	0.5°x0.5°	6 hourly	1979—2009, global	Based on NCEP CFSR (6 hourly, 0.5°x0.5°); Precipitation is bias-corrected based on GPCP 2.2 (monthly, 2.5°x2.5°; Adler et al. 2003)
NARR-MsTMIP (Wei et al. 2014)	0.25°x0.25°	3 hourly	1979—2010, North America	Based on NCEP NARR (3 hourly, 32 km); Precipitation is bias-corrected based on GPCP 2.1 (monthly, 2.5°x2.5°; Adler et al. 2003); Incident shortwave radiation is bias-corrected based on MT-CLIM 4.3 (Thornton & Running 1999) estimates using daily max and min air temperature and daily precipitation (bias-corrected). Product created for the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP; Huntzinger et al. 2013)

Met data (1980-2009) averaged over high-elevation grid cells*

Mean bias errors (1998-2007) at the Niwot Ridge site

Niwot Ridge AmeriFlux Tower

Simulated above-ground biomass (AGB), year 2000

Simulated above-ground biomass (AGB), year 2005 Niwot Ridge site

Niwot Ridge AmeriFlux Tower

Point-level CLM4.5-CN simulations based on Raczka et al. (2016)

CLM4.5-SP results (1980-2009), averaged over high-elevation grid cells

Conclusions

- Simulation of AGB in UT+CO is highly sensitive to the met forcing product used (0.06—0.26 Pg C)
- Fundamental restriction on plant growth in UT+CO is linked to summer water stress, exacerbated by positive biases in SW↓ and negative biases in Precip
- CLM performance greatly improves with NARR-MsTMIP forcing (both biases are minimized)
 - At high elevations, AGB more than doubled in comparison with CRU-NCEP simulation

Using more accurate met datasets with smaller biases is a direct, effective, and justifiable way to improve model performance.

Recent developments & future work

- Significant boost in AGB in the western U.S. after using highresolution (4x4km) met forcing and surface maps and species-specific PFTs with unique parameters (and other CLM4.5 mods)
 - Contribution from met forcing alone is yet to be determined
- We plan to build upon this work to improve our prior simulations before DA

Acknowledgements

This research was supported by the U.S. Dept. of Energy's Office of Science, Terrestrial Ecosystem Science Program (awards DE-SC0010624 and DE-SC0010625), and by the NASA Carbon Monitoring System Project (award NNX16AP33G).

Office of Science

References

- Adler et al. (2003): The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present). Journal of Hydrometeorology, 4, 1147–1167.
- Huntzinger et al. (2013): The North American Carbon Program Multi-Scale Synthesis and Terrestrial Model Intercomparison Project – part 1: Overview and experimental design. *Geoscientific Model Development*, 6, 2121–2133.
- Kellndorfer et al. (2013): NACP Aboveground Biomass and Carbon Baseline Data, V. 2 (NBCD 2000), U.S.A., 2000 [Dataset]. Oak Ridge, TN: ORNL DAAC.
- Raczka et al. (2016): An observational constraint on stomatal function in forests: evaluating coupled carbon and water vapor exchange with carbon isotopes in the Community Land Model (CLM4.5). Biogeosciences, 13, 5183–5204.
- Thornton & Running (1999): An improved algorithm for estimating incident daily solar radiation from measurements of temperature, humidity, and precipitation. *Agricultural and Forest Meteorology*, 93, 211– 228.
- Wang et al. (2016): Estimates of global surface hydrology and heat fluxes from the Community Land Model (CLM4.5) with four atmospheric forcing datasets. *Journal of Hydrometeorology*, 17, 2493–2510.
- Wei et al. (2014): The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – part 2: Environmental driver data. *Geoscientific Model Development*, 7, 2875– 2893.

CLM4.5-CN results at Niwot Ridge (average over first five simulation years after initialization)

