Light-weight Infrastructure for Land Atmosphere Coupling (LILAC)

Joe Hamman Dave Lawrence, Mariana Vertenstein, Bill Sacks, Negin Sobhani, Rocky Dunlap

NCAR - Land Model Working Group Meeting February 11, 2019

Background: Regional Arctic System Model

- Regional configuration of CESM 1
 - CPL7/POP/CICE
 - WRF/VIC/RVIC
- Required custom coupling interfaces for 3 of 5 model components
 - These interfaces needed to be rewritten when model versions
- Highlights the need for simple/portable interfaces

Lessons from VIC Version 5

- Why was VIC successful?
 - Open-source
 - Portable and light weight minimal dependencies
 - C Compiler
 - VIC 5 added NetCDF and MPI
 - Flexible
 - Applications include forecasting, coupled modeling, water resources, and climate change
 - Configurations include single point, regional, and global
- What was new in VIC 5?
 - Clean separation of physics from drivers
 - Improvements to infrastructure to support new applications (like RASM)
 - Made coupling to CESM easy!

VIC Physical Core

...but LILAC is for CTSM

CTSM and **CESM**

- CTSM is typically run as part of CESM using the Model Coupling Toolkit (MCT)
- All fluxes are routed through CPL7
- CESM/CPL7 is the driver
- Lots of supporting infrastructure
- Fairly strict requirements:
 - Global model domain
 - Time stepping scheme
 - CIME dependency

- **1.** NWP models (e.g. WRF) are the simulation driver
- 2. The land model is a subroutine call within the atmosphere run sequence.
- 3. Models like WRF come with their own build/test/run infrastructure

Motivating Challenges

NCAR

- Community model with applications beyond CESM
 - Regional climate modeling
 - NWP and forecasting
 - Stand-alone model simulations
 - Integration in multi-model systems (e.g. NLDAS)
- CTSM is typically run as part of CESM via CPL7
 - CPL7 is the simulation driver
 - MCT or NUOPC frameworks
- CESM is a heavy dependency
 - CESM/CIME is a very complex dependency
 - Porting is a persistent challenge
- Existing CLM-NWP couplings are growing stale

Support the flexible coupling of CTSM to arbitrary Target Atmosphere Models (TAM)

Provide coupling interface for multiple TAMs Separate CTSM from CESM/CIME dependency Make it easy to implement in new coupling configurations

Make it easy to port to new computing environments

WRF

• Weather Research Forecast model

SAM

• CSU's System for Atmospheric Modeling

COSMO

• ETH-Zurich's coupled biosphereatmosphere Regional Climate Model

RegCM

• Regional climate model originally developed at ICTP

CESM DATM

• Data atmosphere for testing and verification

How LILAC will work

- Each TAM will replace its current land surface scheme with calls to LILAC
- The basic interface includes 3 subroutine calls and some core data structures.
- Uses ESMF extensively for communication, regridding, parallelization
- Each TAM will implement an interface including:
 - Initialization

call lilac_init(grid, clock, ...)

• Run a single timestep

calllilac_run(a2l_vars, l2a_vars, clock, ...)

• Finalize

```
call lilac_final(...)
```


LILAC Project Status

Development started in summer 2018

ESMF is being used as a central building block

- Regridding
- Data structures
- Model coupling

Build and test infrastructure is in place

- Continuous integration running on TravisCI
- Docker containers for portable testing

Current efforts

- ESMF Cap for CTSM
- Developing test cases for coupling CTSM to data atmosphere

Quick Facts

- LILAC GitHub Repo:
 - <u>https://github.com/NCAR/lilac</u>
- LILAC Documentation
 - <u>https://ctsm-lilac.readthedocs.io</u>
- Dependencies:
 - Fortran
 - ESMF
 - CTSM (with CESM share code)

Thanks!

- Contact Info
 - Joe Hamman: jhamman@ucar.edu, joehamman.com
 - NCAR Computational Hydrology: https://rap.ucar.edu/hap/computational-hydrology
- LILAC
 - <u>https://github.com/NCAR/lilac</u>
 - <u>https://ctsm-lilac.readthedocs.io</u>

This work was supported by the US Army Corps of Engineers and the US Bureau of Reclamation. NCAR is supported by the National Science Foundation.

The evolution of land models

CTSM

Evolution of CTSM

- Ecosystem vulnerability and impacts on carbon cycle and ecosystem services
- Sources of predictability from land processes
- Impacts of land use and land-use change on climate, carbon, water, and extremes
- Water and food security in context of climate change, climate variability, and extreme weather

Lateral fluxes of water

Water and land management

Ecosystem Demography / Multi-layer canopy

