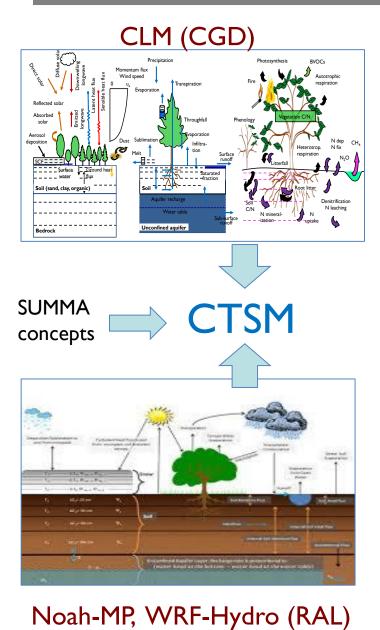

Unifying land modeling across NCAR: The Community Terrestrial System Model (CTSM)

Dave Lawrence, Mike Barlage, Martyn Clark, Bill Sacks, Mariana Vertenstein, Sean Swenson, Naoki Mizukami, Gordon Bonan, Rosie Fisher, Fei Chen, Andy Wood, David Gochis, Ned Patton, Roy Rasmussen, Joe Hamman, Erik Kluzek, and others

The Community Terrestrial System Model


a unified model for research and prediction in climate, weather, water, and ecosystems

Noah-MP, WRF-Hydro (RAL)

The Community Terrestrial System Model

a unified model for research and prediction in climate, weather, water, and ecosystems

• **CTSM** (unification) benefits:

- extend leadership in community modeling
- reverse trends of model proliferation and shantytown syndrome
- more efficient use of NCAR and community model development resources
- integrate and expand land modeling research
- accelerate advances, improve science through multiple hypothesis testing

• **CTSM** software improvement goals:

- reduce accumulated technical debt
- clean separation of flux parameterizations and numerical solution
- modularity; alternative hypotheses
- hierarchy of complexity (climate, NWP, water, and ecology applications)
- flexibility of spatial disaggregation

CTSM development plan

NCAR UCAR

Model development

- Use SUMMA concepts to refactor CLM, and integrate capabilities from Noah-MP
- Major focus on supporting datasets, documentation, user support, etc., to make the model easier to use/modify
- Model will necessarily be more complex than individual models since it must meet a broader range of objectives

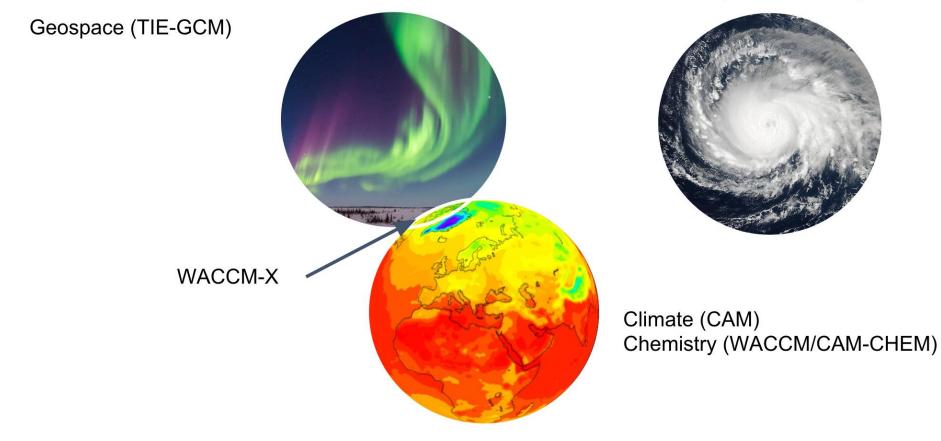
Model transition

- Existing land models (e.g., CLM, Noah-MP) will be instantiations of CTSM (CTSM-Climate and CTSM-NWP)
- Near-term parallel development efforts: Existing models (Noah-MP, SUMMA, WRF-Hydro, etc.) will continue to evolve, shift to CTSM once capabilities exist for specific applications

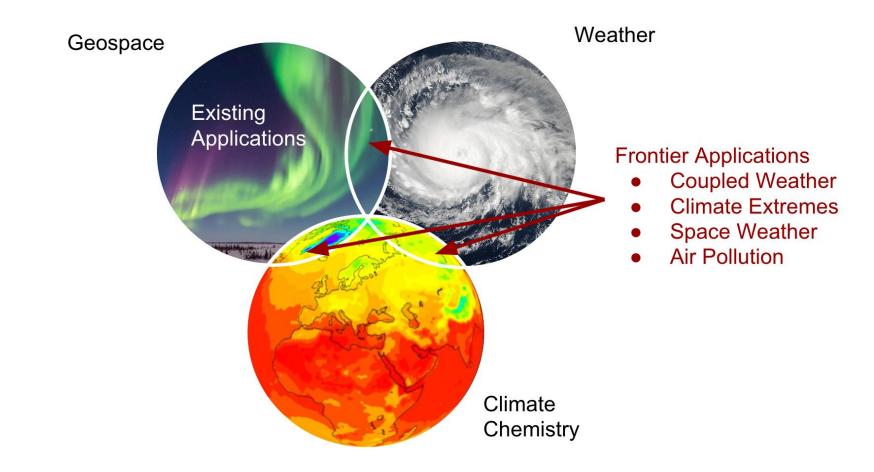
Progress

- CTSM public git repository (github.com/ESCOMP/ctsm)
- CTSM-NWP configuration
- CTSM coupling to Target Atmosphere Models (including WRF) LILAC
- CTSM biogeophysics code refactor (using need for water tracers as guide for implementation)
- CTSM reinvestment: crop model development and unification; multiple irrigation methods; Coupling network-based mizuRoute river model to CTSM; adding reservoirs/lakes to mizuRoute

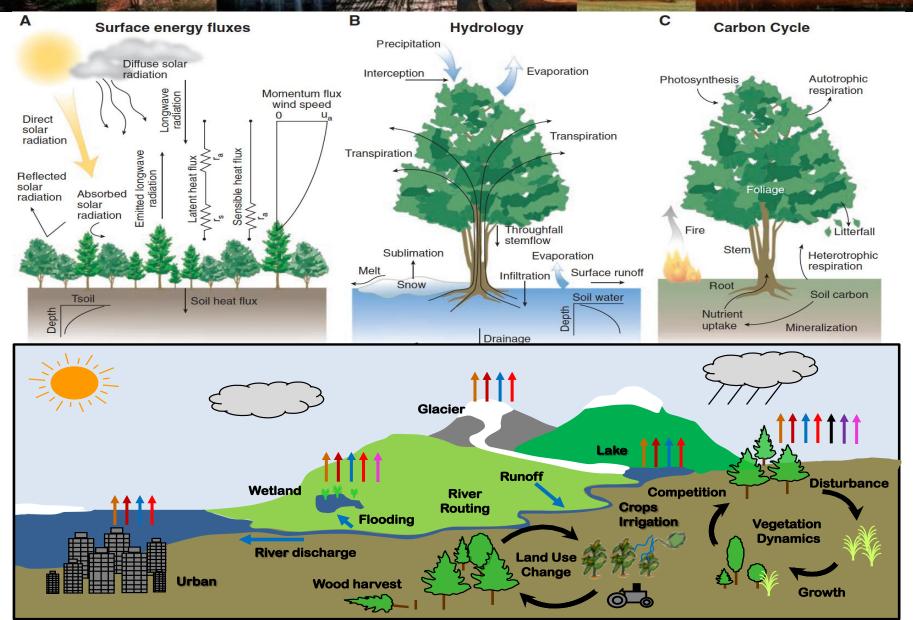
Singletrack: Roadmap for a System for Integrated Modeling of the Atmosphere (SIMA)


A. Gettelman, W. Skamarock, M. Barth, H. Liu On behalf of the *SIMA Steering Group*

Current Community Atmosphere Models

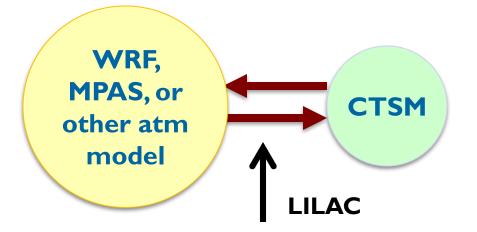

Existing Applications

Weather (WRF & MPAS)



SIMA Vision

Support Existing and Frontier Applications



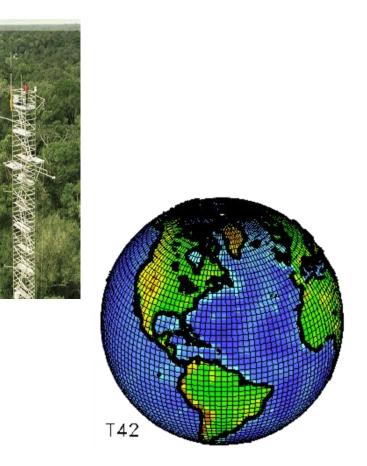
CTSM code infrastructure start with CLM codebase

LILAC - Lightweight Infrastructure for Land-Atmosphere Coupling

Coupling with LILAC

- From the Target Atmosphere Model (TAM) perspective, CTSM will exist as a library
- LILAC acts as an interface between the TAM and CTSM
- Called from within TAM, e.g., WRF surface_driver
- Only fields provided or needed by the TAM are passed through LILAC
- Output fields, CTSM I/O handled within CTSM
- LILAC is evolving; if you have suggestions, we would like to hear them

LILAC project also focusing on ease-of-use, initialization, input data flexibility


CTSM configurations

Model configurations

- SP (satellite phenology, prescribed vegetation)
- BGC (prognostic carbon, vegetation)
- BGC-crop (default in CESM2, same as BGC with crops)
- BGC no-anthro
- + many options for individual parameterizations (i.e., can revert to CLM4.5

Spatial configurations

- Global (low and high resolution)
- Regional
- Single point (tower site)
- Irregular grids (cubed sphere, basin)

Options to reduce complexity (i.e., can be turned off or switched)

- CH₄ emissions
- Carbon isotopes
- Land-use change
- VOC emissions
- Plant Hydraulics
- Soil structure (15-level vs 25-level)

Options to increase complexity

- Representative hillslopes
- FATES (Ecosystem dynamics)
- Fire trace gas emissions
- Additional land management
- Flooding
- Ozone damage to plants
- Water tracers (available soon)

CTSM Advisory Committee

External committee that can provide advice and external support for project. Members selected for ability to provide constructive criticism and also to help ensure that CTSM is a success (e.g., people who may use CTSM in their research and/or in their operational systems).

First meeting TBD (May 2019?)

- I. Paul Dirmeyer (GMU): land-atmosphere 10. Abby Swann (U. Washington): landinteractions
- 2. Martyn Clark (U. Saskatchewan): hydrology
- 3. Christa Peters-Lidard (NASA): Land Information System, drought
- 4. Charlie Koven (LBNL): carbon and ecology
- 5. Ashley Matheny (U.Texas): ecology
- 6. Reed Maxwell (Colorado School of Mines): groundwater hydrology
- 7. Stan Benjamin (NOAA): numerical weather prediction
- 8. Gonzalo Miguez-Macho (U. Santiago): hydrology
- 9. Xubin Zeng (U. Arizona): general

- atmosphere interactions, vegetation
- II. Stefan Kollet (FZ Julich): software infrastructure, hydrology
- 12. Lisa Ainsworth (U. Illinois): agriculture

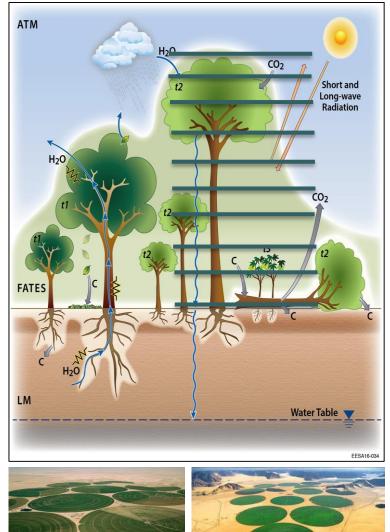
Agency reps:

USGS (Don Cline), USACE (Jeff Arnold) DOE (David Lesmes) NOAA (Jin Huang) NSF (???)

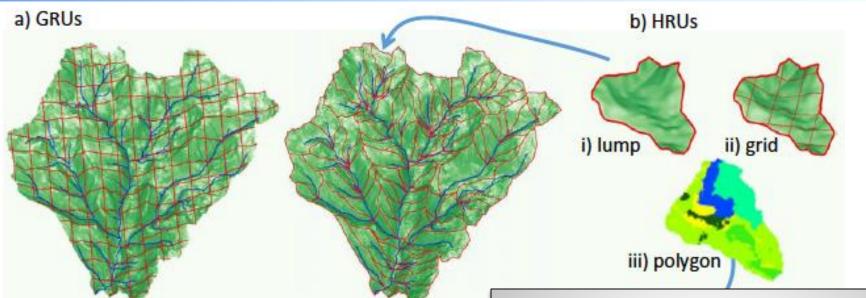
Ex-Officio

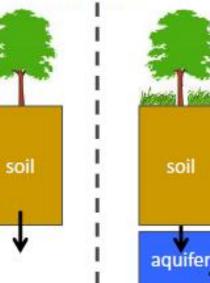
Jean-Francois Lamarque **Bill Mahoney**

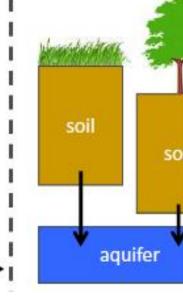
CTSM can help pave wave way for next-generation land model


- Water and food security in context of climate change, climate variability, and extreme weather
- Ecosystem vulnerability and impacts on carbon cycle and ecosystem services
- Sources of predictability from land processes
- Impacts of land use and land-use change on climate, carbon, water, and extremes

Lateral fluxes of water


Water and land management


Ecosystem Demography / Multi-layer canopy

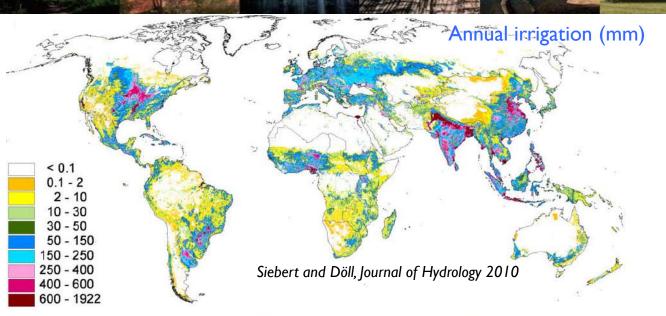

Spatial flexibility

c) Column organization

Need to be able to easily define range of spatial structures

- I. CLM lower resolution, high
 - representation of spatial heterogeneity within grid cell, slow
- 2. Noah-MP higher resolution, less spatial heterogeneity within grid cell, faster
- 3. New research-driven spatial structures, e.g., hydrologic response units or representative hillslopes

Collaborative software development


This repository Search	Pull requests	Issues	Marketpla	ace Explore	e	+• 🛐•	
ESCOMP / ctsm					O Watch → 5	★ Star 1 % Fork 1	
Code ① Issues 204 ⑦ Pull requests 3 Projects 0 III				CTSM pu	rSM public git repository in place		
EXPERIMENTAL - DO NOT USE!				 Branc code 	Initial development focusing on modularization, parameterizations and		
© 510 commits			modu				
Branch: master - New pull request					numerical solution for hydrology Merging of Noah-MP parameterization		
billsacks committed with bjandre clm4_5_18_r270					options that are not already included in CLM		
🖬 bld cln	clm4_5_18_r270				Preliminary assessments of model		
cime_config cln	clm4_5_18_r270					M vs Noah-MP)	
in doc cin	clm4_5_18_r270				CLM transitioning(ed) to public git		
src clm	clm4_5_18_r270 clm4_5_16_r244 clm4_5_18_r270						
src_clm40 clm				• After	After CLM5 release branch create		
test/tools clm				merge CTSM-dev/CLM5 and CLM will			
tools clm	14_5_18_r270			cease to exist as separate code base			

Collaborative software development

This repository Search Pull requests Issues Marketplace Exp	lore + - mir	
ESCOMP / ctsm	Owner Watch ▼ 5 ★ Star 1 % Fork 1	
<> Code ① Issues 204 ① Pull requests 3 Projects 0 Wiki III Insig		
	Pages 10	
Accelerate progress by enabling scientists to		
engage in end-to-end development	• Development guides	
 Coding (follow coding guidelines) 	 Recommended git setup Coding guidelings 	
 Science testing and evaluation 	 Coding guidelines System testing guide 	
Documentation (update Technical Descr.)	• Development workflow	
Software / unit testing	(work in progress)• Testing and PR	
	high-level workflow	
	 Testing and PR complex workflows 	
	Meetings	
	 2018 meeting notes 2017 meeting notes 	
	 2017 meeting notes 2016 meeting notes 	

CTSM development: Human modification of water and biogeochemical cycles

Human appropriation of NPP (%)

Climate/carbon/water impacts due to land management can be as large as due to land-cover change

~25% non-ice land area undergone anthropogenic land-cover change

~80% non-ice land area under some form of land management

NCAR Reinvestment proposal on water management and agriculture in CTSM

Outline

• The interdisciplinary evolution of land models

• CTSM Motivation

- Land modeling challenges
- Ad-hoc approaches to model development

CTSM development

- Underpinnings and structure
- Development process
- Summary and challenges