Attribution of CO_2 seasonal cycle amplification in Northern Hemisphere: Analyses based on a tagged CO_2 transport model

> Xin Lin, Gretchen Keppel-Aleks University of Michigan

CESM Workshop, Boulder Feb. 13, 2019

CO₂ seasonal cycle as one of key indicators of carbon balance

Barrow, Alaska, United States

CO₂ seasonal cycle as one of key indicators of carbon balance

Barrow, Alaska, United States

CO₂ seasonal cycle as one of key indicators of carbon balance

Barrow, Alaska, United States

1 /10

CO₂ seasonal cycle as one of key indicators of carbon balance

CO₂ seasonal cycle amplitude (SCA)

Barrow, Alaska, United States

Amplification of CO₂ seasonal cycle in Northern Hemisphere over the past decades

(Graven et al. 2013 Science)

Amplification of CO₂ seasonal cycle in Northern Hemisphere over the past decades

(Graven et al. 2013 Science)

Understanding the Causes and Implications of Enhanced Seasonal CO₂ Exchange in Arctic and Boreal Ecosystems

Understanding the Causes and Implications of Enhanced Seasonal CO₂ Exchange in Arctic and Boreal Ecosystems

The tagged CO₂ transport model framework

The tagged CO₂ transport model framework

The inverted CO₂ surface fluxes used to drive the transport model

- Monthly NEE from CAMS (Copernicus Atmosphere Monitoring Service) CO₂ inversion v17r1 (2018)
- Flux uncertainty associated to transport errors and data density

Location of the assimilated observations over the globe

The inverted CO₂ surface fluxes used to drive the transport model

- Monthly NEE from CAMS (Copernicus Atmosphere Monitoring Service) CO₂ inversion v17r1 (2018)
- Flux uncertainty associated to transport errors and data density

Location of the assimilated observations over the globe

(Adapted from Chevallier et al. 2018)

Modelled vs. Observed CO₂ seasonal cycle amplitude – NOAA stations

SHM

•GMI

Modelled vs. Observed CO₂ seasonal cycle amplitude – NOAA stations

6 /10

• Good at most northern high latitude stations

Modelled vs. Observed CO₂ seasonal cycle amplitude – NOAA stations

- Good at most northern high latitude stations
- Underestimation of SCA at mountain stations (SUM, NWR, MLO)

Modelled vs. Observed CO₂ seasonal cycle amplitude – NOAA stations

- Good at most northern high latitude stations
- Underestimation of SCA at mountain stations (SUM, NWR, MLO)
- Underestimation of SCA at Pacific stations (SHM, MID, GMI)

Contribution to SCA from different regions

7 /10

HighLatNAHighLatSIBMidLatNatMidLatCropNorthern high stations~20–30%~20–30%~30–40%<10%</td>

Contribution to SCA from different regions

	HighLatNA	HighLatSIB	MidLatNat	MidLatCrop
Northern high stations	~20–30%	~20–30%	~30–40%	<10%
MLO	10%	15%	37%	<10%

Contribution to SCA changes in Northern high latitudes from different regions

8 /10

HighLatNAHighLatSIBMidLatNatMidLatCropNorthern high stations28% for BRW~30–40%~20–30%~10%

Modelled vs. Observed CO₂ seasonal cycle amplitude – Siberia stations

 Model results are reasonable at Siberia stations even though they are not assimilated in the CO₂ inversion

Summary and perspective

Dominant regional contributor to CO_2 SCA and changes in Northern high latitude:

	HighLatNA	HighLatSIB	MidLatNat
Contrib. to CO ₂ SCA	~20–30%	~20–30%	~30–40%
Contrib. to SCA change	depends	~30–40%	~20–30%

Summary and perspective

Dominant regional contributor to CO₂ SCA and changes in Northern high latitude:

	HighLatNA	HighLatSIB	MidLatNat
Contrib. to CO ₂ SCA	~20–30%	~20–30%	~30–40%
Contrib. to SCA change	depends	~30–40%	~20–30%

An "extrapolation" of site-based analyses to pixel-based analyses

Summary and perspective

5.0 10.0

Dominant regional contributor to CO_2 SCA and changes in Northern high latitude:

	HighLatNA	HighLatSIB	MidLatNat
Contrib. to CO ₂ SCA	~20–30%	~20–30%	~30–40%
Contrib. to SCA change	depends	~30–40%	~20–30%

An "extrapolation" of site-based analyses to pixel-based analyses

Application of this tag model framework to land surface model for more hypothesis-driven studies on CO_2 seasonal amplification.

-10.0 -5.0 -2.0 -1.0 -0.5 0.5 1.0 2.0

Acknowledgement

• Collaborators

Brendan Rogers (WHRC) Leah Birch (WHRC)

• Funding resource

NASA Grant NNX17AE13G

- NOAA ESRL for CO₂ flask measurements
- NIES and MGO for CO₂ measurements in Russia
- GEOS-Chem model development group
- CAMS CO₂ inversion group

Contact: xinlinn@umich.edu