CLM5 Matrix Model

Computational efficiency, diagnostics, and Improvement with Data

Chris Lu^{1,2}, Zhenggang Du^{1,3}, Feng Tao⁴, David Lawrence⁵, Erik Kluzek⁵, Keith Oleson⁵, Nathan Collier⁶, and Charlie Koven⁷, Yiqi Luo^{1,4},

¹ Northern Arizona University, USA
² Sun Yat-sen University, China
³ East China Normal University, China
⁴ Tsinghua University, China
⁵ National Center for Atmosphere Research
⁶ Oak Ridge National Laboratory
⁷ Lawrence Berkeley National Laboratory

Yiqi.luo@nau.edu

http://www2.nau.edu/luo-lab/?home

Science and Society of Northern Arizona Uni

NCAR LMWG, Feb 11, 2019

Heroes

Chris Lu

Zhenggang Du

Feng Tao

CLM5.0 matrix model

Carbon and nitrogen transfer among >892 pools 446 pools for carbon cycle 18 x 17 = 306 plant pools 140 soil and litter pools over 20 layers 446 pools for organic nitrogen plus Inorganic nitrogen pools

CLM vegetation C&N: phenology, fire etc.

LR_S: live coarse root storage

Matrix equation of vegetation carbon dynamics

Vegetation nitrogen dynamics

$$\frac{d}{dt}N(t) = \left(A_{Nph}(t)K_{Nph}(t) + A_{Ngm}(t)K_{Ngm}(t) + A_{Nfi}(t)K_{Nfi}(t)\right)N(t) + B_{N}(t)F_{N}(t)$$

Mathematical framework

Vertical profile

Developing

Unifying land carbon cycle models

Matrix models

- 1. CLM 3.5
- 2. CLM4.0
- 3. CLM4.5
- 4. CLM5.0
- 5. CABLE
- 6. LPJ-GUESS
- 7. ORCHIDEE
- 8. BEPS
- 9. TECO
- 10. JULES
- 11. IBIS

In progress

1. LM3V-N

10 nonlinear microbial models by Carlos Sierra

Luo et al. 2017 Luo et al. *to be submitted*

Programming

CLM5.0 biogeochem cycle

Programming

CLM5.0 biogeochem cycle with matrix

Technique test

- Use automated tools (CESM test suites, use "aux_clm" testlists) to test CLM5.0 code both with matrix on and matrix off.
- Code with matrix on:
- In total 159 tests, 149 tests are passed, 2 tests are expected fails, 6 tests are due to restart inconsistency, 1 is from C balance issue, 1 is from wrong initial file address pointed to old address.
- Code with matrix off:
- In total 159 tests, 156 tests are passed, 2 tests are expected fails, 1 is from wrong initial file address pointed to old address..

Scientific test: Simulations

Matrix Vs default RCP 8.5 (global-level)

Matrix Vs default (Global)

Computational efficiency for forward modeling

• The fraction in the bracket is a relative increase of computational time:

(T_{i, matrixon} – T_{i, matrixoff}) / T_{total, matrixoff} * 100%

 $T_{i, matrixon}$ is the computational time consumed by subroutine i, in matrix simulation. $T_{i, matrixoff}$ is the computational time consumed by subroutine i, in control simulation, $T_{total, matrixoff}$ is total computational time in control simulation.

• Comparison is between one-month global simulation (2°x2°) with matrix on and off.

Computational efficiency for Spin-up

Forcing data: One-year (1911) GSWP3V

Diagnostics

Residence (or transit) time = time spent by carbon from entry to exit in a network of multiple pools

Turnover time =pool/flux

Lu et al. 2018 Biogeosciences

Traceability analysis for model Intercomparison

Rafique et al. 2016 Earth System Dynamics

Temperature and water scalars

Rafique et al. 2016 Earth System Dynamics

Data-model comparison

Luo et al. 2015 *Global Change Biology*

Tao et al. In prep.

Parameterization with data from ~30,000 soil profiles

Method	Original Model	Site by Site	Random Sampling	Neural Networking	One Batch (MPI)
R-Squared	0.57	0.97	0.59	0.69	0.64
RMSE	15.86	3.37	12.39	11.23	11.33

Original Model

Site by Site

Random Sampling Neural Networking One Batch

Tao et al. *In prep*.

Uncertainty in projections

Shi et al. 2018 Nat. Comm.

Selection of model structure for priming

Liang et al. 2018 Nat. Comm.

2nd Training Course on **New Advances in Land Carbon Cycle Modeling** Flagstaff, AZ, USA, May 13-24, 2019

- **Modelers** to gain simplicity in coding, diagnostic capability, computational efficiency for your models
- Empiricists to use your data to constrain models toward ecological forecasting
- Scientists who want to learn modeling, data assimilation, and ecological forecasting

Yiqi Luo, yiqi.luo@nau.edu Lifen Jiang, lifen.jiang@nau.edu

Discussion points

- 1. How much details do we need in a model?
- 2. How can we develop an efficient model development-evaluation-improvement continuum?