Modeling sagebrush ecosystem in the Reynolds Creek Experimental Watershed for different CO2 and fire conditions, with the Ecosystem Demography (EDv2.2) model

Karun Pandit<sup>a</sup>, Hamid Dasthi<sup>a</sup>, Nancy Glenn<sup>a</sup>, Alejandro N. Flores<sup>a</sup>, Douglas J.

Shinneman<sup>b</sup>, and Andrew T. Hudak<sup>c</sup>

#### Acknowledgements

Boise Center Aerospace Laboratory (BCAL) Lab for Ecohydrogy and Alternate Futuring (LEAF)

<u>Funding Agencies</u> Joint Fire Science Program (JFSP) NASA-TE Western Wildland Environmental Threat Assessment Center (WWETAC)

<sup>a</sup>Department of Geosciences, Boise State University, Boise, ID <sup>b</sup>U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, ID <sup>c</sup>U.S. Forest Service, Moscow, ID

#### Threats to sagebrush ecosystems

Sagebrush ecosystem in the Western U.S. affected by wildfire frequency, climate change, and invasion from non-native species like Cheatgrass (*Bromus tectorum*) resulting in altered vegetation composition, hydrological function (Schroeder et al., 2004, Connelly et al., 2004; McArthur and Plummer, 1978; Schlaepfer et al., 2014).



Image credit: Anna Roser

#### Restoration efforts

- **Restoration activities** like reducing flammable vegetation, transplanting sagebrush, seeding native grass (Chambers et al., 2014; McIver and Brunson, 2014)
- Effectiveness of these programs are largely unexplored at regional scales

### Ecosystem dynamic models

- widely used to estimate terrestrial vegetation composition and biomass over time and space
- efficiency over direct field measurements and their applicability to broader spatial scales (Dietze et al., 2014; Fisher et al., 2017)

#### General Questions

 Can we explore the effects of disturbances and restoration in sagebrush ecosystem at regional scales, using some dynamic vegetation model ? What would be the associated uncertainties ?

#### Ecosystem Demography (EDv2.2) model

 A cohort based dynamic vegetation model where land surface is composed of a series of gridded cells, that experiences meteorological forcing (Medvigy, 2009; Moorcroft et al., 2001)



EDv2.2 model structure and processes (source: Medvigy et. al., 2009)

## Specific questions

- parameterizing sagebrush (Artemisia spp) shrub PFT in ED model ?
- exploring the dynamics of sagebrush ecosystem at basin scale under different climate, vegetation, and fire scenarios?



Fig. Major processes and inputs involved in modeling ecosystem dynamics using ED

**1. Sagebrush PFT parameterization** 

### a. Initial parameterization

- field data (allometric relationships),
- literature,
- PFT parameters in ED/CLM and other land models

## b. Sensitivity and optimization

- point scale
- initial vegetation
- 15 years run
- forced with WRF meteorological data
- Calibrated and validated against GPP derived from flux tower data at two locations in Reynold Creek



## b. Sensitivity and optimization

parameters selected were mostly related to ecophysiology and biomass allocation Sensitivity Index was calculated as,

$$SI = \frac{GPP_{max} - GPPmi_n}{GPP_{max}}$$

Optimization was done with exhaustive search method

### c. Validation

- GPP outputs from optimum parameters were compared with GPP from flux tower data
- Nash-Sutcliffe efficiency (NSE) score was used for interpretation (Nash and Sutcliffe, 1970)

• NSE = 
$$1 - \frac{\sum_{i=1}^{n} (O_i - P_i)^2}{\sum_{i=1}^{n} (O_i - \bar{O})^2}$$

where,  $O_i$  is observation,  $P_i$  is predicted value,  $\overline{O}$  is mean of observation, and n is number of observations.

## Parameter sensitivity - results

| Parameters                                                   | Initial                | Min                    | Max                    | SI     |
|--------------------------------------------------------------|------------------------|------------------------|------------------------|--------|
| Specific Leaf Area (SLA) (m <sup>2</sup> kg <sup>-1</sup> )  | 4.5                    | 2                      | 15                     | 0.973* |
| V <sub>m0</sub> (μmolm <sup>-2</sup> s <sup>-1</sup> )       | 16.5                   | 4                      | 30                     | 0.962* |
| Stomatal Slope                                               | 7                      | 2                      | 15                     | 0.951* |
| Ratio of fine roots to leaves/ Q-ratio                       | 3.2                    | 0.4                    | 12                     | 0.801* |
| Fineroot Turnover rate (a <sup>-1</sup> )                    | 0.33                   | 0.1                    | 2                      | 0.787* |
| Leaf Turnover rate (a-1)                                     | 1                      | 0.1                    | 2                      | 0.728  |
| Growth respiration factor                                    | 0.33                   | 0.11                   | 0.66                   | 0.718  |
| Cuticular conductance (µmolm <sup>-2</sup> s <sup>-1</sup> ) | 10 <sup>3</sup>        | 10 <sup>2</sup>        | 104                    | 0.672  |
| Water Conductance (ms <sup>-1</sup> kgCroot <sup>-1</sup> )  | 1.9 × 10 <sup>-5</sup> | 1.9 × 10 <sup>-6</sup> | 1.9 × 10 <sup>-4</sup> | 0.227  |
| Seedling mortality                                           | 0.95                   | 0.25                   | 0.99                   | 0.007  |
| Leaf width (m)                                               | 0.05                   | 0.01                   | 0.30                   | 0.006  |
| Storage turnover                                             | 0.624                  | 0.50                   | 0.95                   | 0.003  |

## Optimized parameters

| Parameters                                                   | LS EC station |               | WBS EC station |               |  |
|--------------------------------------------------------------|---------------|---------------|----------------|---------------|--|
|                                                              | Best case     | Ensemble mean | Best case      | Ensemble mean |  |
| <i>V<sub>m0</sub></i> (µmolm <sup>-2</sup> s <sup>-1</sup> ) | 14.00         | 18.50         | 14.00          | 15.80         |  |
| SLA (m²kg⁻¹)                                                 | 6.00          | 7.95          | 6.00           | 7.50          |  |
| Stomatal slope                                               | 10.00         | 7.60          | 10.00          | 8.60          |  |
| Fine root turnover<br>(a <sup>-1</sup> )                     | 0.33          | 0.22          | 0.33           | 0.24          |  |
| Q-ratio                                                      | 3.20          | 2.64          | 3.20           | 1.94          |  |

## Summary

- With optimized parameters, ED predicted daily GPP quite well with some negative bias
- GPP during spring months were not captured well.
- Non-linear relationship between the parameters was not captured.

#### 2. Exploring sagebrush ecosystem dynamics

# Study Area

- Covers Reynold Creek
  Experimental Watershed
- 20 \* 40 grid
- 1 Km resolution



### Data

#### **Meterological forcing**

- Weather Research and Forecasting (WRF) model to subset required forcing data
- 1 km spatial resolution
- 3 hour temporal resolution
- Data from 1988 2016 used

#### Data

- <u>Eddy Covariance tower data</u> from two locations (Fellows et al., 2017)
  - GPP based on observation data

## Modeling scenarios

- A. Vegetation dynamics
  - 1. Bare earth (with default CO<sub>2</sub>)
  - 2. Initial vegetation (with default CO<sub>2</sub>)
  - 3. Increased CO<sub>2</sub> (with bare earth)

Simulated for 20 plus years

B. Disturbance with fire

Fire introduced after 25 years of bare earth simulation

Bare earth = 0.1 plants / m2 for shrub, C3 grass, and conifers

Initial vegetation = 0.25 plants/m2 of shrub and C3 grass Default  $CO_2$  = 370 ppm ambient  $CO_2$ 

Increased CO<sub>2</sub> = 740 ppm ambient CO2

#### Results

There are some site specific variations

But, in general, similar PFT competition trends between sites

Shrub (sagebrush) PFT dominating

Increased CO2 – had increasing conifer species but at low magnitude





#### Comparison of simulated GPP (from final year) with EC tower observation



#### GPP (KgC/m2/yr)

Percent Error

#### GPP (KgC/m2/yr) for C3 grass and Shrub



Year 1

Year 10

Year 20

### Introduction of fire



#### AGB (KgC/m2) for fire and no fire conditions



- Can we make some comparisons with actual fire incident at RCEW?
- 2015 Soda Fire



Poly, A., 2017

#### Comparison with information from Landsat data



Model output





Change in NDVI

change in GPP

### Summary

- After 20 years we did not see coexistence of C3 grass and shrub
- Conifer could encroach some of the shrublands with increased CO2
- Disturbance from fire is more evident after few years and shows some spatial pattern

### Future work

- Compare results from PFT coverage with percent cover maps derived from hyper spectral images.
- Tweak C3 and conifer PFT parameters in ED2 to better model vegetation composition.
- Compare fire related disturbance with some observed data.

#### Thank You !