

Multi-assumption modeling of photosynthesis

Anthony Walker, Ming Ye, Nate Collier, Martin De Kauwe, Lianhong Gu, Ryan Knox, Dan Lu, Belinda Medlyn, Dan Ricciuto, Alistair Rogers, Shawn Serbin

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Identifying (structural) causes of model variability -Assumption Centered Modelling

PERSPECTIVE PUBLISHED ONLINE: 21 MAY 2015 | DOI: 10.1038/NCLIMATE2621 nature climate change

Using ecosystem experiments to improve vegetation models

Belinda E. Medlyn^{1,2*}, Sönke Zaehle³, Martin G. De Kauwe¹, Anthony P. Walker⁴, Michael C. Dietze⁵, Paul J. Hanson⁴, Thomas Hickler⁶, Atul K. Jain⁷, Yiqi Luo⁸, William Parton⁹, I. Colin Prentice^{1,10}, Peter E. Thornton⁴, Shusen Wang¹¹, Ying-Ping Wang¹², Ensheng Weng¹³, Colleen M. Iversen⁴, Heather R. McCarthy⁸, Jeffrey M. Warren⁴, Ram Oren^{14,15} and Richard J. Norby⁴

Systems are composed of multiple processes

Systems are composed of multiple processes Competing hypotheses can exist for each process

Systems are composed of multiple processes Competing hypotheses can exist for each process Resulting in multiple possible models of the system

Systems are composed of multiple processes Competing hypotheses can exist for each process Resulting in multiple possible models of the system

Output

18 possible system models in this simple example

Multi-Assumption Architecture & Testbed (MAAT)

- A multi-assumption/multi-hypothesis software framework developed to allow on-the-fly system model configuration during runtime with:
 - alternative process assumptions/hypotheses,
 - parameters (traits),
 - boundary conditions
- Designed to generate large ensembles of possible models
- Framework is general and not system specific
- Encodes a novel algorithm for process-level global sensitivity analysis (Dai, et al. 2017 WRR) and global parameter sensitivity analysis (Saltelli et al., 2010)

https://github.com/walkeranthonyp/MAAT Walker et al. (2018) GMD

Multi-assumption / multi-hypothesis modeling

8

Leaf-scale photosynthesis models are the heart of Earth-System Land Models

... to allow mechanistic simulation of physiological responses to increasing atmospheric CO₂

Multi-assumption leaf photosynthesis model

- MAAT contains a leaf-scale photosynthesis model
- Can mimic FATES, CLM(4.0 & 4.5), LM3, JULES, BETHY, + others ... or can create and run all possible model combinations

Farquhar or Collatz? Two main flavors of photosynthesis model

11

Sensitivity analysis to compare Farquhar and Collatz

- Of leaf carbon assimilation and its response to atmospheric CO₂
- Four processes: electron transport (3 representations), carboxylation (1 representation), limiting rate selection (2 representations), and TPU limitation (2 representations)
- 12 system models
- 14 parameters across processes: common lit values +- 10%, uniform distribution
- Atmospheric CO $_2$ of 280, 400, 600 ppm and PAR 200, 500, 1000 $\mu mol\ m^{-2}\ s^{-1}$
- Stomatal conductance based on Medlyn et al. (2011) fixed g_0 and g_1
- 25 °C i.e. no temperature scaling
- Process SA 100M member ensemble, ~2hrs on 32 processors
- Parameter SA 86.4M member ensemble, ~2hrs on 32 processors

Farquhar enzyme kinetic model of C3 photosynthesis

13

Parameter values

V _{cmax}	Maximum RuBisCO carboxylation rate	45-55	µmol CO ₂ m ⁻² s ⁻¹
K _c	Micaelis-Menten constant of RuBisCO for CO ₂	36.5-44.5	Pa
K _o	Micaelis-Menten constant of RuBisCO for O_2	25.0-30.6	kPa
k _o :k _c	Ratio of RuBisCO turnover numbers for O_2 and CO_2	0.19-0.23	-
a _{jv}	Intercept J _{max} to V _{cmax} relationship	26.2-36.0	µmol q m ⁻² s ⁻¹
b _{jv}	Slope J _{max} to V _{cmax} relationship	1.48-1.80	mol q mol ⁻¹ CO ₂
а	Leaf absorbtance of visible solar radiation	0.72-0.88	-
f	Fraction of absorbed light not absorbed by photrosystems	0.207-0.253	-
θ _j	Electron transport smoothing	0.81-0.99	-
θ _{cj}	Assimilation rate smoothing 1	0.81-0.99	-
θ _{cjp}	Assimilation rate smoothing 2	0.81-0.99	-
TPU	Triose phosphate utilisation	0.150 – 0.184 V _{cmax}	µmol P m ⁻² s ⁻¹
a _{tpu}	Fraction of phosphate exported from chloroplast not returned	0.45-0.55	-
R _d	Dark respiration	0.150 – 0.184 V _{cmax}	µmol CO ₂ m ⁻² s ⁻¹

Variability in carbon assimilation

Assimilation sensitivity to processes

CESM Land Model and Biogeochemistry Working Group Meetings, NCAR, 11th February 2019

Assimilation sensitivity to parameters

17

Variability in assimilation response to CO₂ increase

18

Assimilation response sensitivity to processes

Gross assimilation reduction with smoothed vs. minimum limiting rate selection

CESM Land Model and Biogeochemistry Working Group Meetings, NCAR, 11th February 2019

Summary

- Competing hypotheses are a key component of model variability / predictive uncertainty.
- Even for a relatively well-understood model of photosynthesis, multi-hypothesis methods have revealed substantial variability and surprising sensitivities.
 - i.e. sensitivity to the non-mechanistic process of limiting rate selection (under the conditions of the SA, environment, parameter values, ± 10 %).
- Limiting rate selection?
- With tools like MAAT (and others) the influence of competing hypotheses can be approached in a less *ad hoc* way.
- Allow rapid detailed investigation: e.g. faster photosynthesis solve.

Thank you.

Terrestrial Ecosystem Science SFA CAK RIDGE National Laboratory

Office of Science

walkerap@ornl.gov @AnthonyPWalker github.com/walkeranthonyp/MAAT

Farquhar or Collatz? Two main flavors of photosynthesis model

23 **CAK RIDGE** National Laboratory

Farquhar or Collatz?

24 **CAK RIDGE** National Laboratory

ings, NCAR, 11th February 2019

Faster photosynthesis solve

A maximum of 2000 leaf photosynthesis calculations (400 solves) per timestep

Time spent in CLM5 on canopy stability solve

- Prescribed vegetation mode (CLM5SP) 26%
- Prognostic biogeochemistry (CLM5BGC-crop) 8%
- Prognostic BGC with isotopes (CLM5BGC-crop-iso) 4%

D. Lawrence, pers. comm.

Time spent in CLM5 on canopy stability solve

- Prescribed vegetation mode (CLM5SP) 26%
- Prognostic biogeochemistry (CLM5BGC-crop) 8%
- Prognostic BGC with isotopes (CLM5BGC-crop-iso) 4%

Speed improvement over numerical solve

MAAT ~34 % decrease in leaf solve runtime

FATES / CLM ~? %

Summary

- Developed a method (EGGS) to solve leaf photosynthesis semianalytically
- Accurate (>99.9 % cases), 34 % speed increase in solves
- Need to fine tune algorithm when initial guess < 0
- Final algorithm development in MAAT, translate to FATES & test

