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ldentifying (structural) causes of model variabillity -
Assumption Centered Modelling
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Systems are composed of multiple processes
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Competing hypotheses can exist for each process
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Resulting in multiple possible models of the system
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Resulting in multiple possible models of the system
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Multi-Assumption Architecture & Testbed (MAAT)

A multi-assumption/multi-hypothesis software framework developed to allow
on-the-fly system model configuration during runtime with:

— alternative process assumptions/hypotheses,
— parameters (traits),
— boundary conditions

Designed to generate large ensembles of possible models

Framework is general and not system specific

Encodes a novel algorithm for process-level global sensitivity analysis (Dai, et
al. 2017 WRR) and global parameter sensitivity analysis (Saltelli et al., 2010)

https://github.com/walkeranthonyp/MAAT
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Multi-assumption / multi-hypothesis modeling

Input Alternative Process

Hypotheses

Biological Process .
system A I

Model ensemble
configuration &
execution

Process
B

Output Model of biological
system

gOAK RIDGE

National Laboratory



LEAF CLOSE-P

LAMINR [LERF BLADE]

PHOTOSYNTHESIS

7\
\_
\_ SUGAR

TPEHERIRIED HRILICH PAHT

0, ENTRY

CHLORDPLAST CLOSE-LP

CESM Land Model and Biogeochemistry Working Group Meetings, NCAR, 11t February 2019



Multi-assumption leaf photosynthesis model|

« MAAT contains a leaf-scale photosynthesis model

e Can mimic FATES, CLM(4.0 & 4.5), LM3, JULES, BETHY, + others ...
or can create and run all possible model combinations
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Farquhar or Collatz?
Two main flavors of photosynthesis model
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¥

Sensitivity analysis to compare Farquhar and Collatz

Of leaf carbon assimilation and its response to atmospheric CO,

Four processes: electron transport (3 representations), carboxylation (1
representation), limiting rate selection (2 representations), and TPU limitation (2
representations)

12 system models

14 parameters across processes. common lit values +- 10%, uniform distribution
Atmospheric CO, of 280, 400, 600 ppm and PAR 200, 500, 1000 pmol m-? s
Stomatal conductance based on Medlyn et al. (2011) fixed g, and g,

25 °C i.e. no temperature scaling

Process SA 100M member ensemble, ~2hrs on 32 processors

Parameter SA 86.4M member ensemble, ~2hrs on 32 processors
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Farquhar enzyme kinetic model of C3 photosynthesis

Carboxylation

Electron Transport
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Parameter values

V cmax Maximum RuBisCO carboxylation rate 45-55 umol CO, m-2 s1

Ke Micaelis-Menten constant of RuBisCO for CO, 36.5-44.5 Pa

K, Micaelis-Menten constant of RuBisCO for O, 25.0-30.6 kPa

ko: kc ?;;izo of RuBisCO turnover numbers for O, and 0.19-0.23 _

ay, Intercept J,,,,t0 V., Felationship 26.2-36.0 umol g m? st

ij SlIope JpaxtO Vemay relationship 1.48-1.80 mol g mol-1 CoO,

a Leaf absorbtance of visible solar radiation 0.72-0.88 -

f Igsgttrl(c)):y;fe;t;sorbed light not absorbed by 0.207-0.253 _

GJ. Electron transport smoothing 0.81-0.99 -

ecj Assimilation rate smoothing 1 0.81-0.99 -

ecjp Assimilation rate smoothing 2 0.81-0.99 -

TPU Triose phosphate utilisation 0.150 — 0.184 V_1,ax uMol P m2st

c'tpu Zﬁg:f;:sftEZ‘:?Z:‘UE:;ZSXPOWGd o 0.45-0.55 )

R4 Dark respiration 0.150-0.184 V. ,ox WMol CO, m2 s
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Variability in carbon assimilation
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Assimilation sensitivity to processes
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Assimilation sensitivity to parameters

gOAK RIDGE

National Laboratory

Bcjp

ajy S
Utpu Bcip
KC F L e BC]
KD ‘» =l kc . k,
chax f
bjy b by
v
@
L

Ay O
Oltpu O¢jp
“ / T ke ik
Vemax f
b b
™ bw tv
[ ]
®
®
o
®
@



Variabllity in assimilation response to CO, increase
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Assimilation response sensitivity to processes
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Gross assimilation reduction with smoothed vs. minimum
imiting rate selection
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summary

e Competing hypotheses are a key component of model variabllity
/ predictive uncertainty.

e Even for a relatively well-understood model of photosynthesis,
multi-hypothesis methods have revealed substantial variabllity
and surprising sensitivities.

— l.e. sensitivity to the non-mechanistic process of limiting rate selection
(under the conditions of the SA, environment, parameter values, £ 10 %).

e Limiting rate selection?

« With tools like MAAT (and others) the influence of competing
hypotheses can be approached in a less ad hoc way.

« Allow rapid detailed investigation: e.g. faster photosynthesis solve.
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Thank you.
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Farquhar or Collatz?
Two main flavors of photosynthesis model
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Farquhar or Collatz?
Two main flavours c
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Faster photosynthesis solve




Leaf-scale photosynthesis models can be costly to solve
& are solved many times at each timestep ..oy swbilityenergy

Waterflow balance solution requires
Canopy scaling requires simultaneous solve of
multiple leaf solves: Fair canopy photosynthesis:
10 FATES ?{dﬁgﬁmmm I fboundary layer MaX 40 iterations in CLM
2 CLM
LAI SDGVM Energy balance

I'needle

A

. . Rn
Leaf A numerical solution:

max 5 iterations FATES
max 40 iterations CLM

PHOTOSYNTHESS

Oleson et al., 2013
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A maximum of 2000 leaf
photosynthesis calculations
(400 solves) per timestep

Time spent in CLM5 on canopy stabillity solve

%, OAK RIDGE
- National Laboratory

Prescribed vegetation mode (CLM5SP) - 26%
Prognostic biogeochemistry (CLM5BGC-crop) - 8%

Prognostic BGC with isotopes (CLM5BGC-crop-iso) - 4%

D. Lawrence, pers. comm.



Time spent in CLM5 on canopy stabillity solve

= Prescribed vegetation mode (CLM5SP) - 26%
= Prognostic biogeochemistry (CLM5BGC-crop) - 8%
= Prognostic BGC with isotopes (CLM5BGC-crop-iso) - 4%

#0AK RIDGE D. Lawrence, pers. comm.
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Semi-Analytical Method.:
Educated guess, guaranteed span

g, function

Lim. Rate selection

chax,25 (umOI m—2 S_l)

CO, (umol mol-+?)

aguessi aguess2 aguess3
o
30 | f f Temp. (C)
Ty S| VPD (kPa)
|
E 2y PAR (umol m2s1)
= 30
= 15}
w Lo |
Q T
w w
@ 10r o f rs ball1987 f rs_medlyn2011
S E 20
[@)] B 30 ¢
< 57T €
= —
|
0 b 1 L 1 1 L 1 L 1 1 1 g chm
L 10 f e
0 5 10 15 20 25 30 0 5 10f -= < 20
N B e
A numeriq ¢ =
< cts
cC
0t T 10}
1 1 1 E
[4)]
0 10 20 0
<
A numerical [umolm s 0F
0 10 20 30 0 10 20 30
A numerical [umolm™2s™]
%, OAK RIDGE
- National Laboratory S —

Medlyn, Ball

Farquhar,
Collatz

10 to 100 by 10
50, 400, 1000
2, 25, 40

0.1,1, 3

10, 500, 1000

9720 combinations



Speed improvement over numerical solve

MAAT ~34 % decrease in leaf solve runtime FATES / CLM ~? %
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summary

e Developed a method (EGGS) to solve leaf photosynthesis semi-
analytically

o Accurate (>99.9 % cases), 34 % speed increase In solves
= Need to fine tune algorithm when initial guess < 0
» Final algorithm development in MAAT, translate to FATES & test
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CESM Land Model and Biogeochemistry Working Group Meetings, NCAR, 11 February 2019
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