Using TUV for inline photolysis in CESM

C. Bardeen, D. Kinnison, M. Mills, F. Vitt, S. Walters, S. Madronich NCAR

Joint Winter Meeting of the CESM AMWG, WAWG and CCWG

March 10, 2020

Current Photolysis Algorithm in CESM2

- Provides photolysis rates and chemical heating rates
- Uses 100 wavelength bands from 121-750 nm
- Two methods for actinic flux:
 - jshort (121-200 nm, 33 bands)
 - Calculates actinic flux as O₂ and O₃ transmission
 - jlong (201-750 nm, 67 bands)
 - Calculates actinic flux using a lookup table
- Calculates photolysis rates using a table of cross-sections and quantum yields compiled by Doug Kinnison
- Clouds: effective albedo (clouds below) and transmission factor (clouds above) based upon cloud fraction and cloud water content

Actinic Flux Lookup Table

- Calculated off-line using TUV
 - 4-stream calculation
 - Fixed O₃ profile that scales with column amount
 - No aerosols, NO₂, or SO₂
- /glade/p/cesmdata/cseg/inputdata/atm/wacc m/phot/RSF_GT200nm_v3.0_c080811.nc

Dimension	Count	Minimum Value	Maximum Value
Albedo	6	0.05	1.0
Column O ₃	20	30 DU	600 DU
Solar Zenith Angle	24	0°	97°
Altitude	151	0 km	150 km
Wavelength	67	201 nm	725 nm

Tropospheric Ultraviolet and Visible (TUV) Radiation Model

- Calculates the following in the UV and visible:
 - actinic flux
 - photolysis rates
 - action spectra
- Has its own set of cross-sections and quantum yields
- Stand-alone version created by Sacha Madronich (Madronich & Flocke, 1997; Lee-Taylor & Madronich, 2007)
- Available for download: <u>https://www2.acom.ucar.edu/modeling/tropospheric-ultraviolet-and-visible-tuv-radiation-model</u>
- Ported to WRF by Stacy Walters
- Ported to CESM & MICM by Francis Vitt

New CESM/TUV inline implementation

- Inline TUV currently only used for the actinic flux calculation
 - 2-stream calculation
 - Uses CESM wavelength grid (100 bands from 121-750 nm)
 - Uses actual gas profiles (O₂, O₃, NO₂, and SO₂)
 - Includes combined aerosol profile
 - optics interpolated from optical properties calculated for RRTMG
 - Clouds can be handled in TUV following Liao et al. (1999) or in chemistry as we do now
 - Provides output for actinic flux and some spectral integrals
- Uses cross-sections and quantum yields from CESM2 (Kinnison)
- Used for photolysis and heating rate calculations

SD-WACCM: CESM2 & TUV give similar O₃

Year 2011

But TUV up to 22 DU (~7%) higher in some regions

Using TUV Increases Ozone column

Aerosols reduce tropical O_3 , increase polar O_3

Perhaps removing the fixed O₃ profile affects high latitude?

Nuclear weapons ignite mass fires injecting smoke into upper troposphere/stratosphere

- Flash with thermal pulse
- Followed by blast wave
- Can ignite fires in large area and generate secondary ignition
- Firestorms may develop which modify local meteorology and inject smoke into the upper troposphere
- Area burned scales with weapon yield
- Hiroshima
 - 15 kt weapon
 - 13 km² burn area

Hiroshima after blast and fires

WACCM 150 Tg Smoke: CESM vs. TUV US/Russia Global Nuclear War

 O_3 Column: TUV – Table

O₃ Column: TUV Table

WACCM 150 Tg Smoke: Ozone and UV Index US/Russia Global Nuclear War

O₃ Column: TUV

max(UV Index): TUV

Can now get this from CESM, no postprocessing!

5-25% reductions are seen in calculated OH when inline TUV is included in WACCM calculations.

OH oxidizes SO_2 .

Reduced OH leads to longer SO₂ lifetimes.

Summary

- Inline calculations using TUV allow for more precise calculations of photolysis rates including the effects of actual profiles of O₃, SO₂, NO₂, aerosols, and clouds.
- ~1.6% change in model throughput in WACCM
- Allows new output fields:
 - Action Spectra: UV-A, UV-B, UV-B*, PAR, UV Index, max(UV Index)
 - Profiles of actinic flux: Lyman alpha (121 nm), Schuman Runge Bands (180 nm), O3 Hartley Band (210, 240, 308 nm), Chappuis Bands (400, 600 nm)

Questions/Discussion

- Still using existing lookup table for cross-sections and quantum yields, will want to unify values from Kinnison, TUV (Madronich), and other sources (e.g. HARP, Hall)
- How do we want to handle cloud effects (cloud fraction, cloud overlap, ...)? We currently have 2 different approaches.
- TUV 4-stream (discrete ordinate) code will also be ported to WRF, CESM and MICM as an option. It will be more expensive (maybe 2.25x the cost of 2-stream), but perhaps not too expensive.
- Are there other photolysis reactions that people are concerned about that should be evaluated?
- Do we want any other output? Other action spectra?
- Rare computational errors resulting in high max(UV Index) values require further investigation.
- We are planning to port FastJ. Are there any other approaches people would like to see?