

Evolution of CESM Cloud Microphysics: Parameterization of Unified Microphysics Across Scales (PUMAS)

A. Gettelman, H. Morrison (NCAR/MMM), K. Thayer-Calder (NCAR/CGD), T. Eidhammer, G. Thompson (NCAR/RAL), D. Barahona (NASA/GSFC), C. Chen, C. McCluskey (NCAR/CGD), D. J. Gagne, J. Dennis (NCAR/CISL), C. Bardeen (NCAR/ACOM)

Cloud Microphysics Kills!

- Clouds are responsible for most severe weather
 - Tornadoes, Thunderstorms, Hail, Tropical Cyclones
- Critical processes depend on cloud microphysics (Thunderstorms, Hail, even Tornadoes)

Outline

- What is cloud microphysics
- CAM Microphysics Evolution
- Some current work
- Where do we go from here: introducing a new name (PUMAS)

What is Cloud Microphysics?

A = cloud fraction, $q=H_2O$, re=effective radius (size), T=temperature (i)ce, (l)iquid, (v)apor, (r)ain, (s)now

Still need Microphysics Regardless of scale...

(i)ce, (l)iquid, (v)apor, (g)raupel (rimed ice)

Types of Microphysical Schemes

Lagrangian or "Superdroplet"

Follow Lagrangian trajectories of "super-droplets" Represent individual drop interactions with each other

Represent the number of particles in each size 'bin' Number and/or mass by bin for each 'class' of hydrometeor. Computationally expensive, but 'direct'

Predict the total mass

(Usually) represent the size distribution with a function (fixed shape, size) Mass for different 'Classes' (Liquid, Ice, Precip) Computationally efficient

Two Moment (Bulk)

One Moment (Bulk)

Predict mass and number giving more flexibility Represent the size distribution with a function (fixed or variable shape) Distribution function for different 'Classes' (Liquid, Ice, Precip)

CAM Microphysics Evolution

- CAM4: 1 moment (Rasch & Krisjansson 1998)
- CAM5: 2 moment (MG: Morrison & Gettelman 2008)
- CAM6: 2 moment+ Prognostic Precip (MG2: Gettelman & Morrison 2015)
 - Convective microphysics available (Song and Zhang 2011)
- CAM6.2: 2 moment + Rimed Ice (MG3: Gettelman et al 2019) [On CAM Trunk]
- Other efforts
 - MG2 + Unified Ice (Eidhammer et al 2016)
 - Optimization and GPU directives added (CISL)
- MG2 or MG3 currently being used/available in versions of:
 - CAM5/6 derivative modes (e.g. E3SM & NorESM, others), GISS (Ackerman), GEOS (Barahona)
 - Ported to CCPP as part of NOAA testing
 - Also ported to ECMWF-IFS for comparisons (current work)
 - Made available to Climate Modeling Alliance (CliMA: Caltech effort)

Some current work

- S. Ocean Cloud Studies
- Unified Ice porting into MG3
- Machine learning the warm rain process
- Not discussed (maybe elsewhere)
 - Optimization and GPU Port of MG2 microphysics (CISL, Dennis Group)
 - CCPP version of MG3 from NOAA
 - Ice nucleation, especially in mixed phase (McCluskey)
 - CARMA sectional aerosols/cloud modeling with CAM

Southern Ocean Cloud Studies (SOCRATES)

CAM6 simulations along flight tracks in the S. Ocean (Jan-Feb 2018)

- Model size distributions compared to observations.
- CAM6 does very well (this is a 100km global GCM v. in-situ aircraft)
- Not enough supercooled liquid water (distribution not peaked enough)
- Too much warm rain
- Using this to play with the functional form of size distributions

Gettelman et al 2020 (Submitted to JGR)

SOCRATES Sensitivity Tests

CAM5/6 simulations averaged over the S. Ocean (45-65S, 130-170E) v. CERES

- CAM6 still has big regional radiative biases
- CAM5 right for the wrong reasons
- CAM6 with **SB2001** autoconversion better
- CAM6 SB2001 better global Cld Rad Effects

Unified Ice

- Similar to Predicted Particle Properties (P3: Morrison and Milbrant) for combining ice and snow. Single category of ice. Not rimed yet.
- Based in Eidhammer et al (2016)
- Putting it together with a separate rimed ice variable (in MG3)
- Have it running globally. Trying to understand how to balance the climate with a new ice/snow class combined. (Non-trivial)

Machine Learning

Can we do the warm rain process better? Replace autoconversion, accretion and self collection Use a stochastic collection kernel:

- 1. Break distributions of cloud and rain into bins
- 2. Run stochastic collection kernel from a bin microphysics code
- 3. Use altered distributions to estimate AUTO+ACCRE tendency

Preliminary Results:

Similar climate, but different process rate tendencies

Rain formation process looks more like a bin model...different precip structure

But 3x slowdown in CAM run time!

So try to emulate it with a neural network. Mostly works.

But still needs some 'guardrails'

Developing first paper now

Control =significant rain for all R_e Bin = Little rain for R_e <15um (all LWP)

 $\log_{10}(dq_r/dt)$

100

Summary

- MG2 and 3 (graupel) are currently available in CAM6
- Suggest we get rid of KK2000 autoconversion
 - Either use SB2001 (namelist switch)
 - Exploring whether emulating stochastic collection is a good strategy (at least 6 months out from a verdict)
- Goal is developing flexible options in the microphysics...

Where do we go from here? PUMAS

PUMAS = Parameterization of Unified Microphysics Across Scales

- Based on MG3. Not just M & G anymore!
 - There are 5 NCAR labs + outside collaborators on the title slide
- State of the art bulk 2 moment microphysics for all scales of modeling
 - LES to Mesoscale/Regional to GCM for Weather/Climate
- More flexible microphysics across scales
 - Scalable and efficient for different models
 - Served from an external github repository: more modern software
 - Include unit tests
 - Interfaces for different models
 - Enable broader contributions
 - Incorporate performance improvements and GPU directives
- Where should we go? Happy to take ideas

Current PUMAS Status

- GitHub repository established (<u>https://github.com/ESCOMP/PUMAS</u>)
- Working towards begin able to pull over MG3 into CAM from there
- Developing unit tests
- Science efforts:
 - Unified Ice
 - Efficiency (Vectorization & GPU directives)
 - Independent aerosol formulations (separate lightweight aerosols)
 - Ice Nucleation
 - Convert a version to CCPP interface