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Motivation

Trends in computational power are shifting toward many-core architectures:

- Systems with nodes containing GPUs are popping up everywhere
- Intel and AMD both offer CPUs with more than 100 threads

The efficiency of climate models that can utilize this type of parallelism will be 
passively improved for years to come, but leading climate models aren’t currently 
capable of doing so



Three ways to use highly parallel supercomputers 
for climate modelling:

1. Run at high resolutions (e.g. 3 km).  However, such simulations are limited in 
duration.  These are process simulations rather than climate projections.

1. Run ensembles.  This is useful for uncertainty quantification.

1. Use parallelizable subgrid physics.  E.g., subcolumns.

Our goal



Subcolumns provide a flexible way of improving 
results

Subcolumn calculations allow us to estimate the effects of subgrid variability on 
microphysical process rates.

More subcolumns => better estimations

Subcolumns are highly parallel. As higher core count supercomputers are made 
available, subcolumn-enabled models will see improvements in accuracy without a 
reduction in throughput.

Subcolumnized models can be run at low resolutions and long time steps, 
maintaining the ability to run 100-year climate simulations.



The physical problem subcolumns are 
designed to solve:

We'd like to drive microphysical processes using subgrid-scale 
variability.  

For instance, we'd like to account for the effects of partial cloudiness 
on drizzle rate.  We'd also like to account for within-cloud variability.  

How a model with no subgrid 
information handles microphysics

What we are attempting to do



Our subcolumn generator is named SILHS - Subgrid 
Importance Latin Hypercube Sampler

SILHS is an existing subcolumn model used to calculate grid-box averages of 
physical process rates (Larson et al. 2005; Larson and Schanen 2013; Raut and 
Larson 2016)

Currently, SILHS is used only to average microphysical process rates, but has the 
potential to be applied to radiative transfer or aerosols. 



SILHS’ 4-step method to parameterize subgrid 
variability and drive microphysics:

1. Predict the probability density function (PDF) of subgrid variability at each 
grid level (done by CLUBB).  



SILHS’ 4-step method to parameterize subgrid 
variability and drive microphysics:

2.   Generate subcolumns that are consistent with the subgrid PDF at each 
level and satisfy a suitable overlap assumption (done by SILHS).



SILHS’ 4-step method to parameterize subgrid 
variability and drive microphysics:

3.  Feed each subcolumn into the microphysics parameterization (MG2).

4.  Average the microphysical tendencies from the subcolumns and feed them 
back into the large-scale (host) model.



Results with SILHS in host models have been 
produced

SILHS has been tested in a number of host models (CAM, CESM, E3SM, 
SAM, WRF), and has been shown to improve results.

Even small numbers of subcolumns can improve results.

Large numbers of subcolumns reduce noise and converge to analytic results.



Increasing numbers of subcolumns changes results

Diagram shows a 5 year average of cloud brightness. This run was tuned using 10 
subcolumns. Thayer-Calder et al. (2015)



Large numbers of subcolumns converge to analytic 
results.

Figure courtesy of Niklas Selke



More subcolumns can improve solution 
accuracy and are more affordable on highly 
parallel systems

Subcolumns are embarrassingly parallel 
with respect to each other.

The cost of a single subcolumn run on a 
single core is roughly equivalent to the cost 
of n subcolumns run on n cores. 

Without parallelizing the code, the additional 
cost of the microphysics calls makes using 
large numbers of subcolumns infeasible.
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We are refactoring SILHS to run efficiently on 
GPUs

GPUs are able to complete 1000s of calculations in parallel 

Consider a simple calculation over all vertical levels of every subcolumn 
drawn from a single grid column:

- This requires (#vertical levels * #subcolumns) calculations.
- With 50 grid levels and 100 subcolumns, each calculation needs to be 

done 5000 times



To run efficiently on GPUs, parallelism needs to 
be exposed on a lower level 

GPU cores are less powerful and flexible than CPU cores 

- CPU cores can execute complicated and dissimilar tasks (e.g. you could 
assign each core to a different subroutine)

- GPU cores can only complete simple and similar tasks (e.g. each core 
multiplies two numbers, but with each core assigned unique numbers)

In theory, compilers could detect high level parallelism and propagate it down 
to the lowest level, but this would require some wizardry that compilers are 
nowhere close to.



Challenges: We need to minimize data transfers to 
the GPU to make subcolumn calculations efficient

Copying data to and from the 
GPU device is expensive.

We need to minimize this data 
transfer to ensure subcolumn 
calculations run efficiently.
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Copy only averaged results 
back to CPU



Challenges: Branchy code is inefficient

Consider this example:

Running this code on a GPU 
will likely result in each thread 
executing both expensive 
calculations.

GPUs group threads into “warps”, where each thread within a warp executes 
the same instructions. 32 threads per warp with current architectures.

If one thread in a warp needs to use the first calculation, and another in the 
same warp needs to use the second calculation, all threads in the warp need 
to complete both calculations. This is called warp divergence.



Challenges: Kernel sizes need to be small

On a GPU, a kernel is a routine that is executed in parallel, e.g. a loop.

Kernels can be too large to run efficiently. 
For example, a loop that uses many 
variables can cause too much memory or 
register usage in one spot.

Breaking up large kernels into smaller 
ones can reduce these bottlenecks.



Pushing loops down to the lowest levels is 
necessary for GPU code, but also improves 
CPU code

Ultimately, it is up to the compilers to determine how the work for parallel 
sections of code is distributed.

A loop with a subroutine in it may be completely parallel, but this is generally 
too difficult for compilers to detect this parallelism. Push those loops down.

Compilers are best at optimizing and parallelizing simple loops. This is true for 
code being compiled for either CPUs or GPUs, and even if the CPU code is 
not being parallelized over threads.



Major coding hurdles are complete

The portion of code that generates subcolumns on the GPU is complete.

We have a version of MG2 running on GPUs, courtesy of John Dennis.

The code bases have been tested for efficiency, but still need to be stitched 
together in a single version of CAM and optimized.



Efficiency analysis: Subcolumn generation

This figure shows the number of subcolumns that can be generated per 
second using a single Intel Xeon CPU core, compared to using a P4000 GPU. 
The test was run with a single column model.

This demonstrates that the efficiency of the subcolumn generation method on 
a many-core architecture improves as more subcolumns are used.



Efficiency analysis: Microphysics (MG2)

This figure shows the number of subcolumns that can be handled per second 
by MG2 vs a GPUized version of MG2. Courtesy of John Dennis.

This demonstrates that the efficiency of the microphysics call on a many-core 
architecture improves as more subcolumns are used.



Efficiency analysis: Interpretation

The true additional cost of using a fully GPUized version of SILHS cannot be 
evaluated using these results. 

These tests demonstrate that when run on many-core architectures, the 
efficiency of SILHS improves as more subcolumns are used.

As many-core architectures improve and become more available, we will be 
able to either:

- Maintain subcolumn counts and see increases in throughput
- Increase subcolumn counts while maintaining throughput



Future versions of SILHS could run efficiently 
on GPUs and many-core CPUs

Since CPUs are capable of parallelism on low levels also, code that exploits 
parallelism well on GPUs can do so with CPUs as well, with minor changes.

CPUs still don’t have the core counts to compete with GPUs for massively 
parallel tasks, but SILHS has a configurable number of subcolumns, allowing 
us to fit the number of subcolumns to the amount of cores available.



Recap

Recently, and in the foreseeable future, increases in computational power are 
being driven by the shift to many-core architectures.

This type of parallelism doesn’t improve our ability to run long duration climate 
simulations using existing models.

As more cores (CPU or GPU) are made available, our subcolumn method can 
improve the accuracy of existing models without affecting throughput.

There’s still work to be done, but initial tests are promising and the project has 
a lot of future potential.
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