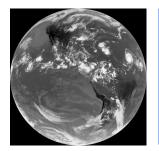



**\*** Stony Brook University

## Reduced Complexity Frameworks for Investigating the Geographic Controls of Severe Local Storm Environments in CAM6 Kevin A. Reed

School of Marine and Atmospheric Sciences Stony Brook University, Stony Brook, New York

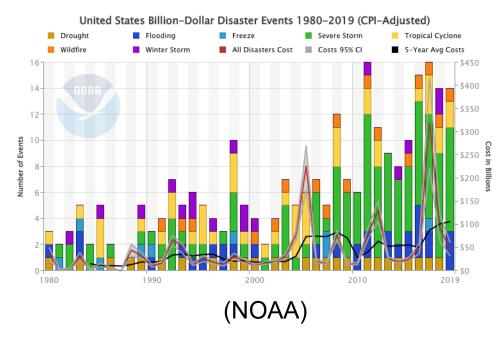
### **Funing Li & Daniel Chavas**

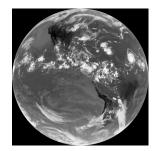

Department of Earth, Atmospheric and Planetary Sciences

Purdue University, West Lafayette, Indiana

Nan Rosenbloom

National Center for Atmospheric Research

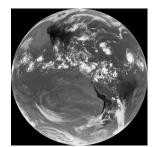



## **Motivation**

# U.S. National Climate Assessment:

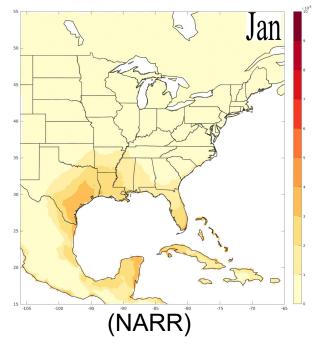
"Changes in **extreme weather events** are the primary way that most people experience climate change. Human-induced climate change has already increased the number and strength of some of these extreme events."






# **SLS-Climate Framework**



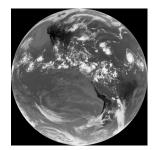

- 1. CAPE
- 2. Lower-tropospheric wind shear (0-6km)
- Low-level stormrelative helicity (SRH; 0-3km)
- 1. CAPE x shear (CAPES06) (Brooks et al 2003)
- 2. Energy-Helicity Index (EHI) ~ CAPE x SRH (Hart and Korotky 1991)
- 3. Significant Tornado Parameter (e.g., Thompson et al. 2003)



## Severe Local Storm (SLS) Environments

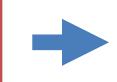
# SLS Environments are **necessary conditions** for severe weather:

99<sup>th</sup> percentile Sfc CAPE x 0-6 km bulk shear




EF1+ Tornadoes




Mar. 9, 2020

#### Monthly Climatology 1979-2015



## **SLS-Climate Framework**

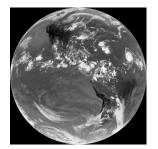






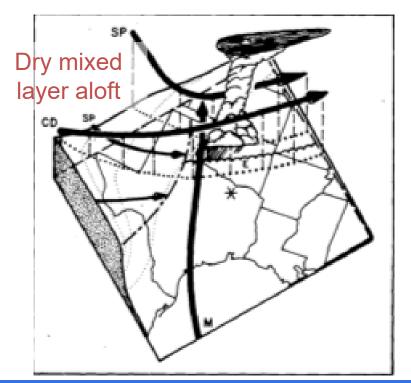





### Climate

### **Recent work:**

- Tornadoes trends (e.g., Agee et al. 2017, Gensini and Brooks 2018)
- Climate change effects (e.g., Seeley and Romps 2015, Agard and Emanuel 2017, Singh et al. 2017, Trapp and Hoogewind 2016)

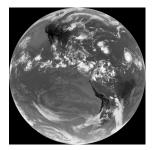

## Why do these environments exist in the first place?

Mar. 9, 2020



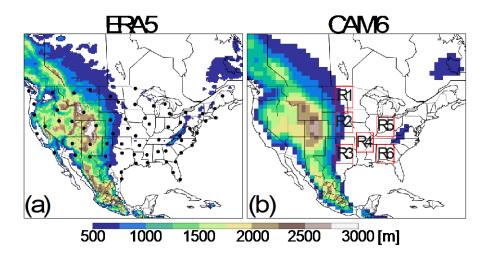
# **Prevailing Model**

Differential advection: warm moist low-level air undercuts elevated mixed layer

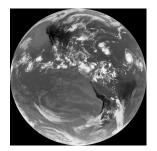



Key factors:

- 1. Elevated terrain upstream
- 2. Gulf of Mexico to the south


Are these geographic features essential to the production of SLS environments over North America?

Mar. 9, 2020



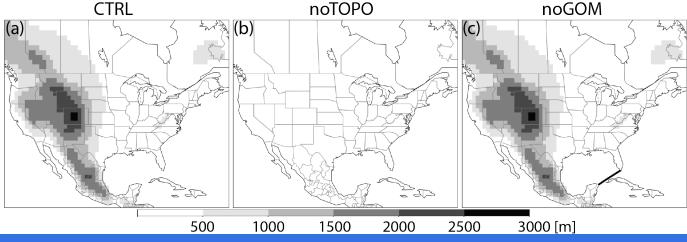

## **Model Experiments**

- National Center for Atmospheric Research's (NCAR) Community Atmosphere Model version 6 (CAM6).
- Standard CMIP6 horizontal resolution (Δx ~ 100km) with Finite Volume core with 32 vertical levels is used.
- Full physics with Atmospheric Model Intercomparison Project (AMIP) protocols for 1980-2005.
- Prescribed observed (or projected) SSTs, ozone, CO<sub>2</sub>, solar forcing, etc.

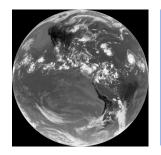


• Will be compared to **ERA5 reanalysis** ( $\Delta x = 31$  km).



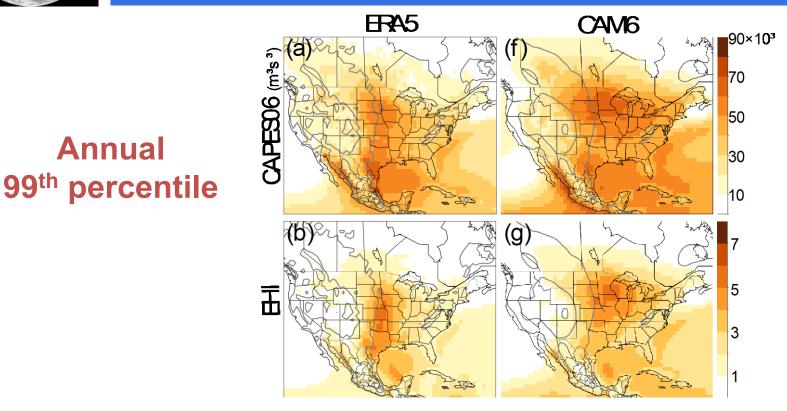

## **Model Experiments**

Test the role of North American geographical features using global climate model experiments with CAM6. Experiments:


- 1. Control: Earth-like present day climate
- noTOPO: North American topography set.
  to zero

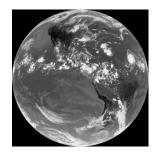
### Thermodynamic parameters:

- Surface-based CAPE
  - 0-6km bulk shear S06
- 0-3km SRH
- 3. noGOM: Gulf of Mexico converted to land




**Goal: Simplicity** 

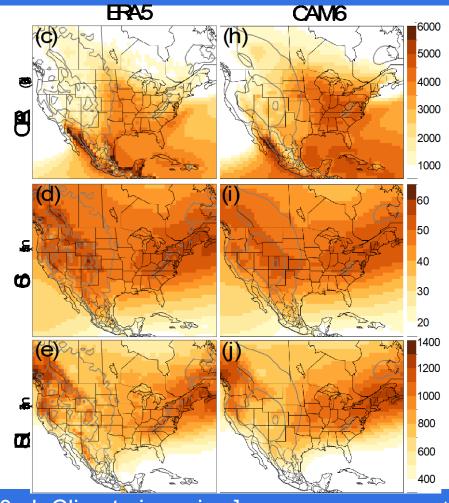


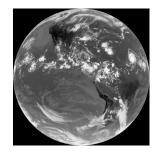

Annual

## **Results:** Control

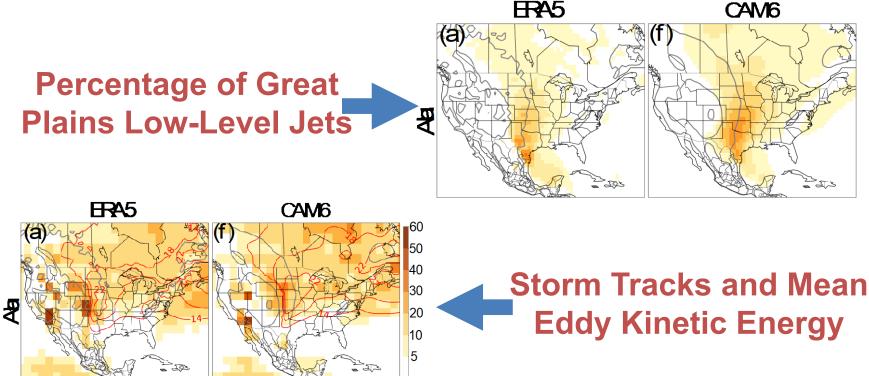


Control experiment produces reasonable climatology of **SLS environments** (as well as the seasonal and daily cycles).


Mar. 9, 2020

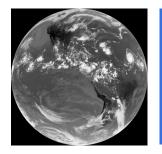



## **Results: Control**


## Annual 99<sup>th</sup> percentile

Control experiment produces reasonable climatology of environment parameters.



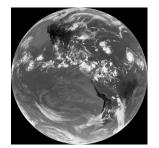



## **Results: Control**



The ability to simulate these environments can be attributed to representing the **synoptic-scale mechanisms**.

Mar. 9, 2020

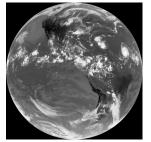



# Results: noTOPO & noGOM

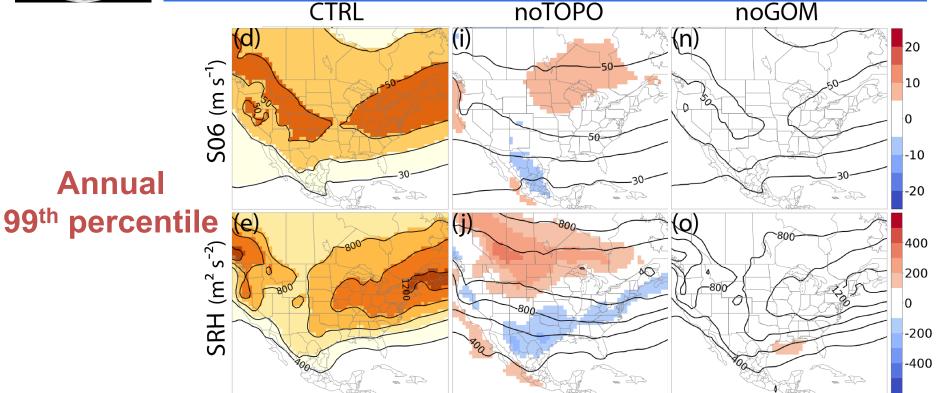
#### **CTRL** noTOPO noGOM a K) (f)APES06 (m<sup>3</sup>s<sup>-3</sup> 20000 10000 10000 10000 0 -10000 -20000 Annual (b) (g) (1) 99<sup>th</sup> percentile E n -2

SLS Environment is **reduced in continental interior** for noTOPO, more complex for noGOM.

Mar. 9, 2020

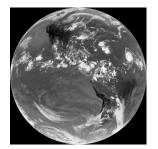



# Results: noTOPO & noGOM


# Annual 99<sup>th</sup> percentile CTRL noTOPO noGOM

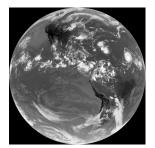
## High CAPE environments are **reduced in continental interior** in both cases.

Mar. 9, 2020



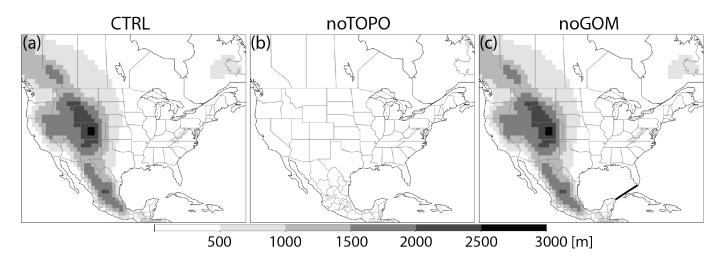

# Results: noTOPO & noGOM



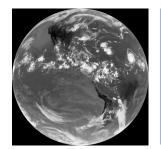

noTOPO simulations suggests impact on circulations, which impact SLS environments, not so for noGOM.

Mar. 9, 2020




# Takeaways & Ongoing Work

- CAM6 reproduces climatological SLS environments from ERA5 over the central US, as well as their strong seasonal and diurnal cycles (not shown here).
- Topography is crucial for inland SLS environments, predominantly associated with a reduction in CAPE, but not for their existence in general.
- When Gulf of Mexico is altered there is also a decrease in extreme inland SLS environments.
- Note: We cannot address changes in SLS events (i.e,. SLS production efficiency).




# Next Steps: Idealized Configurations

This work is a **crucial first step** to building a **reduced-complexity framework** to quantify how land-ocean contrast and elevated terrain control SLS environments.



[Preliminary Work]



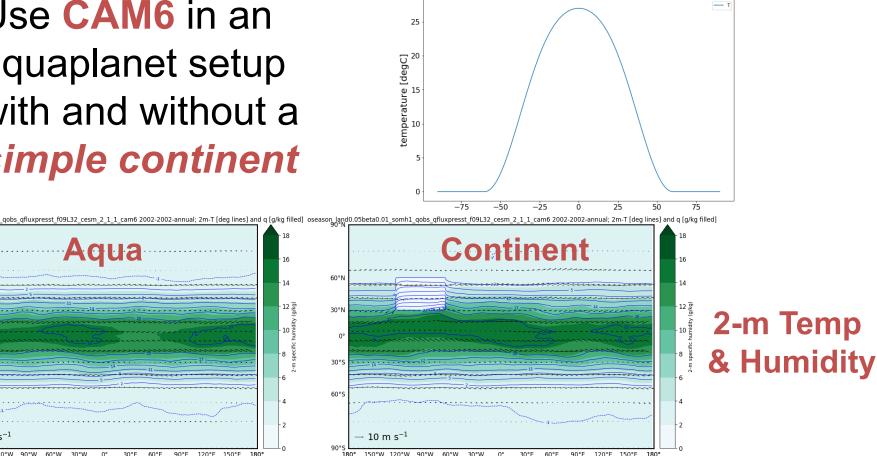
60°I

30°N

60°

 $- 10 \text{ m s}^{-1}$ 

150°W 120°W

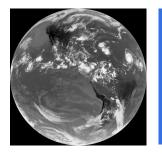

# **Next Steps: Idealized** Configurations

## Use CAM6 in an aquaplanet setup with and without a simple continent

16

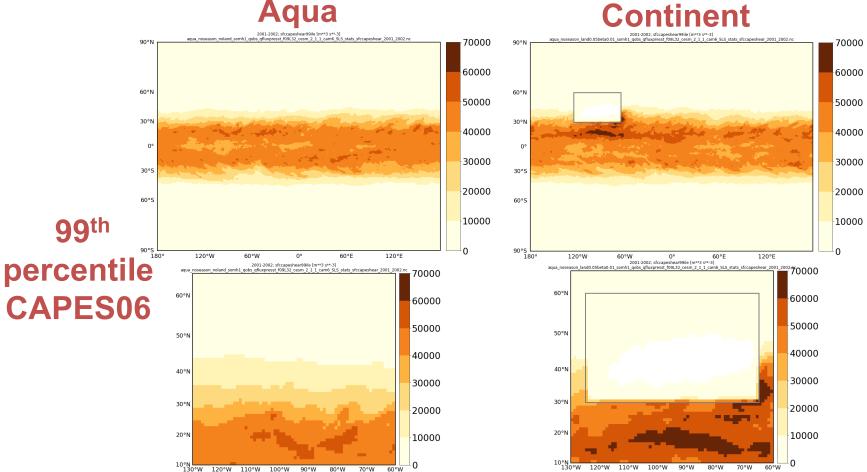
14

Adua




ua noseason lando.05beta0.01 somh1 gobs ofluxpresst f09L32 cesm 2.1.1 cam

Mar. 9, 2020


90°W

#### [Preliminary Work]




## Next Steps: Idealized Configurations

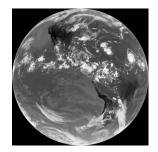
### **Aqua**



Mar. 9, 2020

### [Preliminary Work]

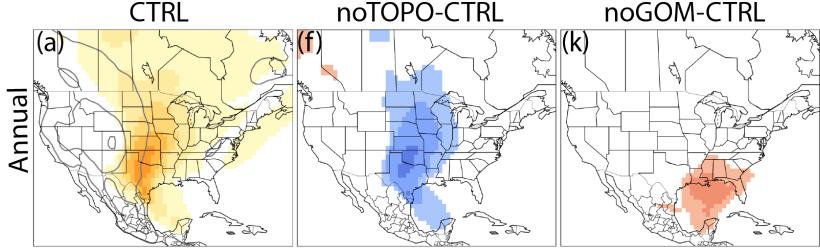



## Thank You

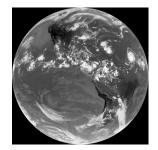


Funding: NSF AGS1648629 & AGS1648681

NCAR


NSF

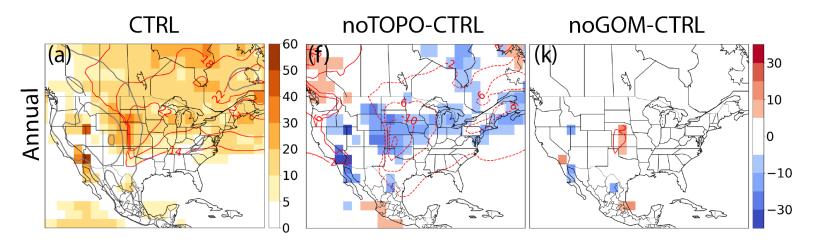



## Results: noTOPO / noGOM

Annual 99<sup>th</sup> percentile






Mar. 9, 2020



## Results: noTOPO / noGOM

Annual 99<sup>th</sup> percentile

## Storm Tracks and Mean Eddy Kinetic Energy

