EVALUATION OF THE ATLANTIC MERIDIONAL OVERTURNING CIRCULATION UNDER HIGH CO₂ EMISSIONS #### Lívia Sancho¹, Luiz Paulo de Freitas Assad², Luiz Landau¹, Marcio Cataldi³ ¹Civil Engineering Program - Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia – COPPE/UFRJ ²Faculty of Meteorology – Geoscience Institute - UFRJ ³Faculty of Water Resources and Environmental Engineering- UFF ## Climate Change and Social Impacts #### Oeep water formation sites ## AMOC and NADW x CO₂ Deep cold currents Surface warm currents • Balance in the CO₂ concentration between reservoirs (Houghton, 2008). Radiative forcing \uparrow temperature \downarrow CO_2 absorption potential. Change in the balance between reservoirs. A warmer climate is related to a weakened AMOC (Houghton, 2008). AMOC and NADW formation as the drivers of the current stable climate (Ansorgue *et al.*, 2014; Danabasoglu *et al.*, 2019; Tomczak & Godfrey, 1994). ## Hypothesis ## Methodology – CESM2 and Experiments | Exp. | Forcings | T. int. | Aims | |---------------------|----------------------|---------|----------------------------------| | piControl | Invariant | 1200 y | Evaluate unforced variability | | 1pctCO ₂ | 1%/y CO ₂ | 150 y | Climate sensitivity and feedback | ### AMOC Tipping point Lenton *et al.* (2008): ✓ 3-5°C above 14.05°C (1980-1999) Year 601 − 17.16°C (> 3°C) Year 637 – 19.14°C (> 5°C) Manabe & Stouffer (1999) Lenton *et al.* (2008): X #### AMOC Tipping point - ✓ Less heat reaching high latitudes in the North Atlantic. - ✓ Shallower upper branch. - ✓ Stronger and broader lower branch. #### AMOC Tipping point Bakker *et al.* (2016) ↓90% in the overturning. ★ • Other significant changes were observed in the North and South Atlantic that are related with AMOC strength and NADW formation. # Projecting with 1pctCO₂ • 1pctCO₂ → idealized experiment → Not a projection scenario. Relate observed and simulated CO₂ emissions. → Project analyzed 1pctCO₂ changes into the real world. ## Projecting with 1pctCO₂ #### Remarks \checkmark Changes on the 1pctCO_2 were diverse and so were the consequences of them. This work made contributions to the knowledge about the mechanisms that govern and may influence AMOC dynamics and NADW formation. \checkmark Without achieving a tipping point in the AMOC and NADW, the analysis identified several consequences for the Earth Climate System worldwide that arouse from the continuous increase in CO_2 forcing. #### Remarks ✓ Despite being an idealized experiment, a simple projection into the future made based on measured atmospheric CO₂ showed some relevant consequences for the Earth Climate System in less than 30 years from now. This exercise demonstrated not only the relevance of the results as well as a potential future if nothing is done to reduce GHGs atmospheric emissions. ✓ In addition to the environmental consequences due to Global Warming, other studies reveal its consequences for human life like shorter gestational lengths (Barreca & Schaller, 2020), leading to lower birth weights, for example.