

OCE-1559153.

Paleoceanography and Paleoclimatology

RESEARCH ARTICLE 10.1029/2019PA003644

Key Points:

- Modeled deep ocean tidal dissipation approximately doubled during the LGM, but the magnitude is dependent on LGM ice sheet extent
- Increase in LGM tidal mixing

Glacial Ice Sheet Extent Effects on Modeled Tidal Mixing and the Global Overturning Circulation

S.-B. Wilmes^{1,2}, A. Schmittner¹, and J. A. M. Green²

¹College of Environmental, Atmospheric and Ocean Sciences, Oregon State University, Corvallis, OR, USA, ²School of Ocean Sciences, Bangor University, Bangor, UK

Modeling Tidal Mixing in the Glacial Ocean

CESM Ocean Modeling Group Meeting, April 15, 2020

AGU1

Andreas Schmittner¹, **Sophie-Berenice Wilmes^{1,2}**, J. A. Mattias Green², G. Danabasoglu³

¹Oregon State University

²Bangor University

³NCAR

Methods

Tide Model Simulations

- OTIS (Oregon State Tidal Inversion Software)
- M2, S2, O1, K1
- Different resolutions (up to 1/12°)
- Different Internal Tide (IT) Drag Parameterizations
- Different LGM bathymetries (ICE5G, ICE6G)

Climate Model Simulations

- University of Victoria (UVic) model
- Tidal Mixing Parameterization (Jayne, St. Laurent, Simmons)
- Model of Ocean Biogeochemistry & Isotopes (MOBI) includes paleo tracers δ^{13} C, and radiocarbon
- Vary Southern Ocean buoyancy fluxes

Tidal Dissipation

Wilmes et al., (2019)

Tidal Mixing Parameterization

Diapycnal Diffusivity: $k_{\rm u} = k_{\rm l}$

$k_{\rm bg} = 0.3 \times 10^{-4} \, {\rm m}^2/{\rm s}$

Subgrid-scale bathymetry:

 $\epsilon = \frac{1}{\rho} \sum_{z'>z}^{H} \sum_{f}^{TC} q_{TC} D_{IT,TC}(x, y, z') F(z, z'),$ Dissipation Efficiency = Fraction of locally dissipated energy

$$bg + \frac{\Gamma\epsilon}{N^2},$$

Considers only locally dissipated energy, which is only 1/3 of the total!

$$q_{\rm TC} = \begin{cases} 1, \text{for}|y| > y_{c,\rm TC} \\ 0.33, \text{otherwise.} \end{cases}$$

Schmittner & Egbert (2014) Geosc. Mod. Devel.

Saltier AABW, shallower & weaker AMOC

Reduced atmospheric meridional moisture flux in Southern Hemisphere

Depth (m) 2000 3000 μ_{SH} = 0 4000 5000 1000 Depth (m) 2000 μ_{SH} = 0.1 3000 4000 AABWA 5000 1000 $\mu_{\rm SH} = 0.25 \stackrel{(i)}{=} 100$ 2000 3000 4000 5000 1000 (E) 2000 Depth μ_{SH} = 0.5 300 4000 500 1000 Depth (m) 2000 3000 μ_{SH} = 1 4000 500 -40 -20 Latitude (°N)

Wilmes et al., (in prep.)

PD tides

0

ICE-6G tides

5

Streamfunction (Sv)

ICE-5G tides

LGM tidal mixing

- Increases k_v
- Increases AMOC
- Increases AABW

Wilmes et al., (in prep.)

Radiocarbon

Wilmes et al., (in prep.)

PD tides

ICE-6G tides

μ _{SH} = 0	Depth (m)	1000 2000 3000 4000 5000	AABWA -4.1Sv
μ _{SH} = 0.1	Depth (m)	1000 2000 3000 4000 5000	AABWA -4.1Sv
μ _{SH} = 0.25	Depth (m)	1000 2000 3000 4000 5000	AABWA -3.7Sv
μ _{SH} = 0.5	Depth (m)	1000 2000 3000 4000 5000	AABWA -3.6Sv
μ _{SH} = 1	Depth (m)	1000 2000 3000 4000 5000	AABWA -2.5Sv

-60

Wilmes et al., (in prep.)

δ13**C**

PD tides

AMOC 0,1Sv

AMOC 7,1Sv

AMOC 9,1Sv

AMOC 10.7Sv

ICE-6G tides

AABWA

AABWA

AABWA

AABWA

-60

40

AMOC 8,5Sv

AMOC 10.1Sv

AMOC 12.1Sv

AMOC 15.1Sv

60

.

 δ^{13} C (permil)

-0.5

Atlantic Profiles

Conclusions

- Increased tidal mixing in LGM is robust result, but quantitatively depends on reconstructed bathymetry (basin geometry; land ice extent)
- Increased diffusivities increase AMOC & AABW flow rates
- MOC geometry (AMOC depth) strongly affects isotopes
- Effect of increased mixing is more subtle but improves model-data agreement
- All these results are conservative because they neglect changes in remotely dissipated energy
 - Would be good to include remotely dissipated energy in future simulations e.g. by using Eden & Olbers parameterization (who wants to collaborate on this?)