Energizing Turbulence Closures in Ocean Models

Laure Zanna, NYU

& the Ocean Transport & Eddy Energy Climate Process Team (CPI)

R@E?’ C=1r

New York University

Columbia University

University of Colorado, Boulder
Woods Hole Oceanographic Institute
Princeton University / NOAA-GFDL
NCAR

University of Washington, APL
Brown University

University of Chicago

LANL, DOE

(@) (@] o O o (@) o (@) (@] (@)

https://ocea n—eddy—cp’r.gi’rhub.io/)

=)DV ED
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" Improve parameterizations of mesoscale
eddies in ocean models though energetics

" Focus on linking (hew) momentum,
buoyancy, and eddy energy closures,

constrained by observations

* Targeting resolution-, scale- and flow-
aware implementations in ocean
models (MOMé at GFDL and NCAR, and
MPAS)
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* Today: | will focus on the motivation and a subset of work being carried out as part of

the ocean eddy CPT



Energy Cycle

e Sources, sinks and transfer of energy across scales:

= are key to maintain the circulation & transport in the ocean

(e.g., Wunsch & Ferrari 2004; Ferrari & Wunsch 2009) Wind + Buoyancy
Work
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adapted from Salmon, 1998 & Vallis, 2006; Zanna et al 2020
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e Sources, sinks and transfer of energy across scales:
= are key to maintain the circulation & transport in the ocean (e.g.,
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Wunsch & Ferrari 2004; Ferrari & Wunsch 2009)

= impact the lateral and vertical transport in global models (e.g., Kjellsson &

Zanna, 2017)
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Energy Cycle & Mesoscale Eddies

 Mesoscale eddies are a major player in the energy cycle:

= extract energy from the mean flow
= form the bulk of the kinetic energy in the ocean
= tfransfer of kinetic energy across scales
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adapted from Salmon, 1998 & Vallis, 2006; Zanna et al 2020




Energy Cycle & Eddy Parameterizations

 Gent-McWilliams (1990): mimics baroclinic instability
= extremely successful in reducing spurious convection & mixing

= net sink of available potential energy Wind + Buoyancy
Work

= Nno accounting of eddy energy
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adapted from Salmon, 1998 & Vallis, 2006; Zanna et al 2020




Keeping track of eddy energy

= Using a prognostic equation for eddy energy

e 3D or 2D (depth-averaged) mesoscale eddy kinetic energy equation (e.g.,
Cessi 2008; Eden & Greatbatch, 2009; Marshall & Adcroft 2010; Jansen et al 2019)
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— ' = Sources + Sinks + Transport

ot

» For example, the eddy energy can be used to inform the Gent-McWilliams
coefficient (e.g., Adcroft et al., 2019; and more advanced energy framework of Marshall et al.
GEOMETRIC)

= But
1) we are still missing some energy pathways
2) we must consider the increase in horizontal resolution of global models
(af the deformation scale) - resolufion-aware

3) we need to rethink momentum closures - scale- & flow-aware




Energy Cycle & Eddy Parameterizations

* Transfer of available potential energy into resolved kinetic energy
 Backscatter/Inverse kinetic energy cascade
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adapted from Salmon, 1998 & Vallis, 2006; Zanna et al 2020




Potential Energy into resolved kinetic energy

= New schemes which re-injects available potential energy removed by
Gent-McWilliams into resolved scales (Bachman 2019; Jansen et al 2019)
= Mimicking both baroclinic instability & energy backscatter
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= Hoth use anti-viscosity in the momentum equation, is it the most appropriate
forme



Kinetic Energy Backscatter/ Momentum Closures

= Stochastic closures (e.g., Berloff 2005; Brankart 2013; Porta Mana & Zanna, 2014)
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= Jet rectification & sharpening via 05 \/

upgradient momentum fluxes (Starr 1963,
Shutts 1986)

= Flow- & Scale-Aware
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Concluding Remarks

e Lack of a physically-consistent energy cycle impacts simulated ocean
circulation

e Recent eddy turbulence closures targeting energy transfers have shown a
reduction in biases in ocean transport in idealized simulations



Model Resolution & Closures
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Concluding Remarks

e Lack of a physically-consistent energy cycle impacts simulated ocean

circulation

e Recent eddy turbulence closures targeting energy transfers have shown a
reduction in biases in ocean transport in idealized simulations

e Challenges ahead, in addifion to implementation in global models (which is
underway as many of the parameterizations are implemented in MOMG)

= Can observations & global high-resolution simulations help constrain the
partitioning of energy and its pathwayse

= Which momentum closure increases the fidelity of the energy cycle?¢

= What is the impact of the vertical structure of eddy energy on transporte

There is a need for observationally-constrained & unified buoyancy and
momentum closures, via energetics, for a robust scale- and flow-aware

implementation in IPCC-class models




