

Modelling past ice sheet changes to improve climate projections: the 8.2 kyr abrupt cooling event

Lauren Gregoire, Ilkka Matero, Ruza Ivanovic, Stephen Cornford

UK Research and Innovation

The 8.2 kyr cooling event

UNIVERSITY OF LEEDS

Greenland ice cores

Northern Hemisphere cooling

Morrill et al. Clim. Past (2012)

Cause of the 8.2 kyr event ?

 Traditional hypothesis: Outburst of Lake Agassiz and Ojibway (<2years), possibly multiple events

Cause of the 8.2 kyr event ?

- Traditional hypothesis: Outburst of Lake Agassiz and Ojibway (<2years), possibly multiple events
- Newer hypothesis: Hudson Bay Ice Saddle Collapse causing century-scale acceleration of meltwater flux (Gregoire et al. 2012; Matero et al. 2017)

Climatic effect of Hudson Bay Ice Saddle collapse

- Acceleration of ice melt: ~4 m in 100 yrs
- Matches the duration, pattern and magnitude of cooling observed
- Lake release cooling too short

UNIVERSITY OF LEEDS

Matero et al. EPSL (2017)

Climatic effect of Hudson Bay Ice Saddle collapse

Matero et al. EPSL (2

6

Simulating the ice sheet evolution

- BISICLES 3D ice sheet model with Adaptive Mesh Refinement
- Accurate and efficient
- > Simulates marine ice sheet dynamics

UNIVERSITY OF LEEDS

Simulating the ice sheet evolution

- HadCM3 climate model
- Equilibrium simulations at 500 years interval from 10 ka to 7 ka
- Greenhouse gases, orbit, ice sheets (ICE-6G_c) and coastlines from PMIP4 protocol (Ivanovic et al., 2016).
- Linear interpolation between simulations

- Positive Degree day surface mass balance
- Downscaling onto ice sheet surface with temperature lapse rate.
- BISICLES ice sheet model

Realistic simulations

- Ensemble of 60 simulations from 10 – 7 ka
- Uncertain inputs varied:
 - Precipitation
 - Melt parameters
 - Ice flow parameters
 - Initial conditions
- Selected simulations that match evolution of ice extent (e.g. Dyke, 2004 ...).

Ice sheet extent (blue) match reconstruction (red line) in 11 simulations

Hudson Bay Saddle Collapse

Meltwater pulse: 2-3 m sea level rise in 200-400 years

Effect of sub-shelf melt

Role of ice streams ?

Margold et al. 2018

Modelling Ice Streams

- Incorporated a basal sliding scheme in BISICLES
- Coulomb sliding in warm based areas.
- Good match to geological evidence of past ice stream positions/direction

(Gandy et al., QSR, 2019)

The Challenge: Tackling climate uncertainty

- Climate is the largest source of uncertainty
- Billions of numbers to generate
- Requires new Artificial Intelligence techniques

Future plans: New AI tools

• Novel Artificial intelligence tool (Bayesian uncertainty quantification)

• Combine climate models and observations to generate plausible past/future climates and ice surface mass balance.

Conclusions

- Hudson Bay Saddle collapse can explain the 8.2 kyr cooling event.
- Simulation of Laurentide ice sheet with latest generation ice sheet model
 - Unprecedented match to reconstruction of ice extent.
 - Saddle collapse produces 2-3 m sea level rise in 200-400 years.
 - This mostly depends on surface mass balance.
 - Meltwater pulse is smaller than is needed by HadCM3 to produce event.
- Further model developments to evaluate the role of ice sheet dynamics in the Hudson Bay Saddle collapse.
- Future Leaders Fellowship to develop a surface mass balance emulator.