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“Horizontal grid sizes in GCMs and EMICs are typically several hundred km, and are
inadequate to resolve the steep topography around ice-sheet margins that are
important in determining ablation.” —Pollard, 2010




Second Wave of Variable Resolution CAM-SE
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Spectral Element Dycore (CAM-SE, E3SM)

» High-order CG Method on cubed-sphere, unstructured grid (AKA flexible)
» Denote grid with an ‘ne’ followed by the number of elements on the edge of a panel
» We would call this grid ne5 (element grid)

« Each element contains 16 Gauss-Lobatto Legendre nodes (computational grid)

Degree N=3 Lagrange basis set
(puts the ‘spectral’ in ‘spectral-element’)
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Figures courtesy of Ram Nair




CESM2.2 Spectral Element Dycore

* Dry mass vertical coordinate
» Comprehensive treatment of condensates/energy Held-Suarez w/ topo stress test
« Improved pressure gradient formulation (DOE) i
» Improved accuracy in vertical remapping (DOE)

» Fixes conservation issue w/ physics tendencies

* Improved Kinetic energy spectrum
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How do features behave across the transition?
(Zarzyckiet al. 2014a) [ Dry Vortex Tests
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Tropical Cyclone Permitting (Zarzycki et al. 2014a)

Tropical Cyclone incl. physics
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FIG. 12. Trajectories of tropical storms in aquaplanet simulation. Colors indicate intensity on
the Saffir—-Simpson scale.

’ Led to quite a few hurricane forecast studies using VR-CESM, e.g.,

Forecasted attribution of the human influence
on Hurricane Florence

K. A. Reed'*, A. M. Stansfield', M. F. Wehner?, C. M. Zarzycki*"*
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AGCMs exhibit weak- or non-converging solutions
CAM4 Physics

Zarzycki et al. 2014b MPAS, Rauscher et al. 2013
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AGCMs exhibit weak- or non-converging solutions
CAM4 Physics

Zarzycki et al. 2014b MPAS, Rauscher et al. 2013
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Rhoades: Orographic Precipitation

Characterizing Sierra-Nevada Snowpack, Rhoades et al. 2014 Rocky Mountains, Xu et al. 2014
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...S0 to Greenland we go (van Kampenhout et al. 2019)

Case minus RACMO (1980-1999)

Annual Accumulation
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* Yay on precip! '

« BUT yet again with this stubborn low melt bias in N.E. Greenland ... exists at all resolutions

* I'll be discussing some progress I've made on this issue in the vr-meeting
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ARCTIC-VR (CESM2.2)

ARCTIC (28 km)

‘ARCTIC’ (28 km) ‘ARCTICGRIS’ (14 km)
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Substantial improvement in GriS
SMB over the standard 1° model
(van Kampenhout et al. 2019)

» Lots of enhancements to the spectral-
element dycore!

» Variable-resolution (VR) topography

« Scale-aware tensor hyper-viscosity . 2-way coupling with CISM for
*  MG3 microphysics with improved ice comprehensive GrIS sea-level study
phase (come to vr-discussion to learn more)
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Historical F-compset (data ocn) simulations

Similar to the experiments carried out in van Kampenhout et al. 2019, but using CAM6

Greenland Ice Sheet (GrlS) Topography
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Historical F-compset (data ocn) simulations

Strong low-level winds are a common North Water polynya in northern more continuous than at the 30-km
cold-season feature in Nares Strait, Baffin Bay. Samelson and Barbour resolution (~15 m s7'). The katabatic
located between the high terrain (2008) modeled these winds with Polar ~ winds over Greenland feed into the
of Greenland and Ellesmere Island MMD5 (predecessor to Polar WRF) wind flow at two locations in ASRv2.
(Samelson and Barbour 2008). The with a resolution of 6 km. Figure SBI Notice the multiple centers in the low
strong ageostrophic winds are due shows an example of these events over Baffin Bay compared to the single
to orographic channeling down the that occurred on 9 February 2007 center in ASRvI. The high over the
pressure gradient between high captured by the ASRvl and ASRv2. Arctic Ocean is more clearly captured
pressure over the Arctic Ocean The 15-km ASRv2 does a much by the 15-km ASRv2. This case
(Lincoln Sea) and low pressure over better job resolving the orography illustrates that topographically forced
Baffin Bay. They may play a key role of Nares Strait, and thus the winds winds are much better captured by the
in generating the persistent winter are much stronger (>20 m s™') and finer resolution of ASRv2.

(a) ASRv1 (30 km) (b) ASRv2 (15 km)
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Fic. SBIl. Streamlines and wind speeds (colors) at 10-m for an intense orographically channeled wind

event in Nares Strait on 9 Feb 2007 as captured by (a) ASRvl and (b) ASRv2.

Bromwich et al. 2012, Arctic System Reanalysis




West Antarctic Grids

WAIS-L

WAIS-M
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What are the costs of all these grids?

Grids created for Jan Lenearts group




Model Costs

*Includes 6-hourly i/o

_ NCOLS dt_dyn Core hours p/ sim. yr.

NE30 (global 1 deg) 48602  300s 2073
NE120 (global 1/4 deg) 777632  75s 110000
WAIS-S 77024  75s 10133
WAIS-M 78095 75 10091
WAIS-L 85430 755 11290
ARCTIC 117398 755 20000
ARCTICGRIS 152390 37.5s 45000
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What if you want your own variable resolution grid?

* For now, need to contact VR team at NCAR

« Making/Installing a new grid into CESM is not a trivial task

« We are working with software engineers to simplify the process

« The VR-toolkit is being developed to provide a user friendly means

for CESM users to make/install their own grids, and will eventually

become part of a release




