Searching for subglacial evidence of past West Antarctic Ice Sheet collapse

Trevor Hillebrand, Perry Spector, David Pollard, John Stone, Joel Gombiner

Pleistocene sea level records might not require West Antarctic Ice Sheet collapse

Greene et al. (2017)

Greene et al. (2017)

- We can test for past exposure of subglacial rock surfaces using the cosmogenic nuclides ¹⁰Be and ²⁶Al.
- These are mainly produced by spallation reactions as cosmic rays break up Si and O nuclei in quartz.
- Most cosmic rays only penetrate a few meters into rock or ice.
- Rates of production and decay are known with high precision.

Rignot et al. (2011); Haran et al., (2014); Greene et al. (2017)

Worldview satellite image © DigitalGobe, Inc.

Results:

Results:

Results: Ice has not thinned by ≥150 m

- Vertical profile consistent with millions of years of nuclide production under ~200 m of ice
 - \rightarrow Average ice sheet is thicker than present
- This rock has not been exposed at the surface in ≥ 2.5 million years.

Ice around the Pirrit Hills has not thinned by ≥150 m during the Pleistocene.

What does this mean for the West Antarctic Ice Sheet?

- Penn State ice sheet model
- 3 warm interglacial periods: Marine Isotope Stages 5e, 11, and 31
- 20 km WAIS ice sheet-shelf model, nested within 40 km continental runs
- 540 model runs (90 parameter combinations, 3 time-periods, 2 resolutions)
- Simple modification of LGM-to-present ocean and present atmosphere using benthic $\delta^{18}\text{O}$ and insolation

Lisiecki and Raymo (2005)

Model Ensemble

- 3 ice shelf hydro-fracture coefficients (including zero)
- 3 sub-shelf melt scalings
- 2 isostatic rebound timescales
 - 1,500 and 3,000 years
- 3 maximum cliff failure rates
 - 0, 3, 10 km/yr
- 3 values for basal sliding on modern seafloor
 - 10⁻⁴ (slippery), 10⁻⁵, 10⁻⁶ (resistant)

Takeaways:

- Modeled ice thickness at the Pirrit Hills is a good predictor of ice-sheet volume.
- But model results disagree with isotope results!

Pirrit Hills ice thickness vs. ice sheet volume

Large retreat, but not full collapse

MIS 31

MIS 11

0 1000 2000 3000 Ice Thickness (m) MIS 5e

Okay, a few collapses

MIS 31

MIS 11

0 1000 2000 3000 Ice Thickness (m) MIS 5e

MIS 31

Collapses require:

- Increased ice shelf melt
- Ice shelf hydro-fracture
- Ice cliff collapse
- 3,000 year rebound timescale
- A resistant bed over modern seafloor

Present day

• PISM model forced with modern melt rates in Amundsen Sea (Feldmann & Levermann, 2015)

3500 years

Modified from Feldmann & Levermann (2015)

• PISM model forced with modern melt rates in Amundsen Sea (Feldmann & Levermann, 2015)

7000 years

Modified from Feldmann & Levermann (2015)

- PISM model forced with modern melt rates in Amundsen Sea
- >60 years elevated melt causes full WAIS collapse

7000 years

10500 years

1000 2000 3000 0 Ice thickness (m)

Modified from Feldmann & Levermann (2015)

- PISM model forced with modern melt rates in Amundsen Sea
- >60 years elevated melt causes full WAIS collapse
- No loss of ice shelves \rightarrow No large ٠ change at Pirrit Hills

MIS 5e

Tigchelaar et al. (2018) Control (20 km)

Ice Thickness (m) 0 2000

MIS 5e

Tigchelaar et al. (2018) Control (20 km)

Ice Thickness (m) 0 2000 Tigchelaar et al. (2018) Warm Ocean (40 km)

Tigchelaar et al. (2018) Control (20 km)

Ice Thickness (m) 0 2000 Tigchelaar et al. (2018) Warm Ocean (40 km)

Conclusions

- Ice around the Pirrit Hills has not been 150 m thinner than today in the last few million years
- Ice thickness at the Pirrit Hills is a good predictor of WAIS volume.
 - Large drawdowns at Pirrit Hills require ice shelf loss
- Model ensemble results suggest that if the WAIS *and its ice shelves* collapsed in the last few million years, we should see a signal in Pirrit Hills bedrock.

Conclusions

, but not

