JET PROPULSION LABORATORY

LIWG, Boulder, January 2020

ISMIP6 Antarctica: a multi-model ensemble of the Antarctic ice sheet evolution over, the 21st century

Hélène SEROUSSI¹ AND THE ISMIP6 TEAM ¹ Jet Propulsion Laboratory, California Institute of Technology

Hélène Seroussi ¹, Sophie Nowicki ², Antony J. Payne ³, Heiko Goelzer ^{4,5}, William H. Lipscomb ⁶, Ayako Abe Ouchi ⁷, Cécile Agosta ⁸, Torsten Albrecht ⁹, Xylar Asay-Davis ¹⁰, Alice Barthel ¹⁰, Reinhard Calov ⁹, Richard Cullather ², Christophe Dumas ⁸, Rupert Gladstone ¹¹, Nicholas Golledge ¹², Jonathan M. Gregory ^{13,14}, Ralf Greve ¹⁵, Tore Hatterman ^{16,17}, Matthew J. Hoffman ¹⁰, Angelika Humbert ^{18,19}, Philippe Huybrechts ²⁰, Nicolas C. Jourdain ²¹, Thomas Kleiner ¹⁸, Eric Larour ¹, Gunter R. Leguy ⁶, Daniel P. Lowry ²², Chistopher M. Little ²³, Mathieu Morlighem ²⁴, Frank Pattyn ⁵, Tyler Pelle ²⁴, Stephen F. Price ¹⁰, Aurélien Quiquet ⁸, Ronja Reese ⁹, Nicole-Jeanne Schlegel ¹, Andrew Shepherd ²⁵, Erika Simon ², Robin S. Smith ¹³, Fiammetta Straneo ²⁶, Sainan Sun ⁵, Luke D. Trusel ²⁷, Jonas Van Breedam ¹⁹, Roderik S. W. van de Wal ^{4,28}, Ricarda Winkelmann ^{9,29}, Chen Zhao ³⁰, Tong Zhang ¹⁰, and Thomas Zwinger ³¹

Experimental framework for ISMIP6

Forcing selection

Choice of CMIP5 AOGCM (Barthel et al., 2020):

- Good representation of present-day conditions
- Maximize the diversity of climate projections
- Used different cores (ocean, atmosphere, ...)

Ranking of models according to total bias

LIWG, Boulder - February 2020

Regions used to compute metrics

Normalized projected changes by 2100

External forcings

Ice/atmosphere interface:

- Surface mass balance anomalies
- Surface temperature anomalies
- No regional model to downscale

Ice/ocean interface:

- Open Melt framework (forcing forcing)
- Standard Melt framework (common melt)

 $m(x,y) = \gamma_0 \times \left(\frac{\rho_{sw}c_{pw}}{\rho_i L_f}\right)^2 \times \left(TF(x,y,z_{\text{draft}}) + \delta T_{\text{sector}}\right) \times |\langle TF \rangle_{\text{draft} \in \text{sector}} + \delta T_{\text{sector}}|$

Experiments and participants

List of experiments

List of participants and model characteristics

Experiment	AOGCM	Scenario	Ocean Forcing	Ocean coefficient Ice Shelf Fracture		Tier
historical	None	None	Free	Medium	edium No	
ctrl_proj	None	None	Free	Medium	No	Tier 1 (Core)
exp01	NorESM1-M	RCP8.5	Open	Medium	No	Tier 1 (Core)
exp02	MIROC-ESM-CHEM	RCP8.5	Open	Medium	No	Tier 1 (Core)
exp03	NorESM1-M	RCP2.6	Open	Medium	No	Tier 1 (Core)
exp04	CCSM4	RCP8.5	Open	Medium No		Tier 1 (Core)
exp05	NorESM1-M	RCP8.5	Standard	Medium No		Tier 1 (Core)
exp06	MIROC-ESM-CHEM	RCP8.5	Standard	Medium No		Tier 1 (Core)
exp07	NorESM1-M	RCP2.6	Standard	Medium	No	Tier 1 (Core)
exp08	CCSM4	RCP8.5	Standard	Medium	No	Tier 1 (Core)
exp09	NorESM1-M	RCP8.5	Standard	High	No	Tier 1 (Core)
exp10	NorESM1-M	RCP8.5	Standard	Low	No	Tier 1 (Core)
exp11	CCSM4	RCP8.5	Open	Medium	Yes	Tier 1 (Core)
exp12	CCSM4	RCP8.5	Standard	Medium	Yes	Tier 1 (Core)
exp13	NorESM1-M	RCP8.5	Standard	PIGL	No	Tier 1 (Core)
expA1	HadGEM2-RS	RCP8.5	Open	Medium	No	Tier 2
expA2	CSIRO-MK3	RCP8.5	Open	Medium	No	Tier 2
expA3	IPSL-CM5A-MR	RCP8.5	Open	Medium	No	Tier 2
expA4	IPSL-CM5A-MR	RCP2.6	Open	Medium	No	Tier 2
expA5	HadGEM2-RS	RCP8.5	Standard	Medium	No	Tier 2
expA6	CSIRO-MK3	RCP8.5	Standard	Medium	No	Tier 2
expA7	IPSL-CM5A-MR	RCP8.5	Standard	Medium	No	Tier 2
expA8	IPSL-CM5A-MR	RCP2.6	Standard	Medium	No	Tier 2

Model name	Numerics	Stress balance	Resolution (km)	Init. Method	Initial Year	Melt in partially floating cells	Ice Front	Open melt parameterization	Standard melt parameterization
AWI_PISM1	FD	Hybrid	16	Eq	2005	No	StR	Quad	NoN-Local
DOE_MALI	FE/FV	НО	2-20	DA+	2015	Floating condition	Fix	N/A	NoN-Local anom.
ILTS_PIK_SICOPOLIS1	FD	Hybrid	8	SP	1990	No	MH	N/A	NoN-Local
ILTS_PIK_SICOPOLIS2	FD	Hybrid	8	SP	1990	No	MH	N/A	NoN-Local
IMAU_IMAUICE1	FD	Hybrid	32	Eq	1978	No	Fix	N/A	Local anom
IMAU_IMAUICE2	FD	Hybrid	32	SP	1979	No	Fix	N/A	Local anom
JPL1_ISSM	FE	SSA	2-50	DA	2007	Sub-Grid	Fix	N/A	NoN-Local
LSCE_GRISLI	FD	Hybrid	16	SP+	1995	N/A	MH	N/A	NoN-Local
NCAR_CISM	FE/FV	L1L2	4	SP+	1995	Floating condition	RO	Non-Local + Slope	NoN-Local
PIK_PISM1	FD	Hybrid	8	SP+	1850	Sub-Grid	StR	PICO	N/A
PIK_PISM2	FD	Hybrid	8	SP+	2015	Sub-Grid	StR	PICO	N/A
UCIJPL_ISSM	FE	НО	3-50	DA	2007	Sub-Grid	Fix	PICOP	NoN-Local
ULB_FETISH_16km	FD	Hybrid	16	DA*	2005	N/A	Div	Plume	NoN-Local
ULB_FETISH_32km	FD	Hybrid	32	DA*	2005	N/A	Div	Plume	NoN-Local
UTAS_ElmerIce	FE	Stokes	4-40	DA	2015	Sub-Grid	Fix	N/A	Local
VUB_AISMPALEO	FD	SIA+SSA	20	SP	2000	N/A	MH	N/A	NoN-Local anom
VUW_PISM	FD	Hybrid	16	SP	2015	No	StR	Lin	N/A

Initial conditions

Initial ice extent (a) and floating ice extent (b)

[SMIP:

Root Mean Square Error in ice thickness (a, in m) and ice velocity (b, in m/yr) between modeled and observed values at the beginning of experiments

NorESM1-M RCP 8.5

Evolution of ice volume above floatation relative to control exp.

Mean (a and b) and standard deviation (c and d) of simulated thickness change (a and c, in m) and velocity change (b and d, in m/yr) between 2015 and 2100 under medium forcing from NorESM1-M RCP 8.5 scenario relative to ctrl_proj

NorESM1-M RCP 8.5

Antarctic mass loss for the period 2015-2100 with NorESM1-M RCP 8.5 forcing relative to ctrl_proj by region

LIWG, Boulder - February 2020

JPL

RCP 8.5 forcing from 6 AOGCMs

LIWG, Boulder - February 2020

SMP

JPL

RCP 8.5 forcing from 6 AOGCMs

Antarctic mass loss for the period 2015-2100 for the six RCP 8.5 GCM forcing relative to ctrl_proj by region. Mean values and standard deviations (black)

RCP 8.5 vs RCP 2.6

2 GCMs (NorESM and IPSL) with RCP 8.5 and RCP 2.6 forcing

JPI

Uncertainty in melting

Comparison of open and standard melt frameworks

Cumulative basal melt for 2015-2100 period relative to ctrl_proj Change in VAF between 2015 and 2100 period relative to ctrl_proj

✓ Spatial location of melt is critical

Uncertainty in melting

Uncertainty in melt parameterization for the standard melt framework: Γ_{o}

LIWG, Boulder - February 2020

Impact of ice shelf collapse

Ice shelf collapse if sustained liquid water precipitation at the ice shelf surface (>72.5 cm/yr, Trusel et al., 2015)

Run with CCSM4 with and without ice shelf collapse

Basins vulnerability

SMP

_ID

Conclusions

- Larger uncertainties than Greenland projections with uncertainty from climate models, melt parameterization and ice sheet dynamics
- Significant differences at regional (WAIS, EAIS) and basin scale
- Snowfall in East Antarctica could partially offset the dynamic mass loss caused by warmer ocean waters
- Significant progress since AR5, including realistic forcing and better representation of ice shelves:
 - Interdisciplinary effort with inputs from polar oceanography, atmospheric science, climate models, ...
 - Modeling of ice shelves, grounding line migration, ice front (starting), ...
- Ice sheet models starting to be used in IPCC

Questions?

Ice Sheet Model Intercomparison Project for CMIP6

• ISMIP6 web page:

www.climatecryosphere.org/activities/targeted/ismip6

 ISMIP6 wiki page: www.climatecryosphere.org/wiki/index.php?title=ISMIP6 wiki page

 Contact the ISMIP6 team ismip6@gmail.com

© Copyright 2020. All rights reserved

Ice Sheet Model Intercomparison Project for CMIP6

Ice Sheet Model Intercomparison Project for CMIP6

Goal: Estimate future sea-level contributions from the Greenland and Antarctic ice sheets and associated uncertainties (Nowicki et al., 2016)

ISMIP6 Chairs and Steering Committee

Ice Sheet Model Intercomparison for CMIP6 (ISMIP6)

Ice Sheet & sea level rise within IPCC cycle

- No major dynamic response of the ice sheets was expected during the 21st century
- Main contributor to sea level rise: thermal expansion and melting of glacier

> We know everything!

Ice Sheet & sea level rise within IPCC cycle

"understanding of these effects (rapid dynamical changes in ice flow) is too limited to assess their likelihood or provide a best estimate or an upper bound for sea level rise."

IPCC, 4th Assessment Report (2007)

➢ We know nothing …

Ice Sheet & sea level rise within IPCC cycle

"Projection of sea level rise are larger than in the AR4, primarily because of improved modeling of land-ice contribution."

"significant uncertainties remain, particularly related to the magnitude and rate of the ice-sheet contribution for the 21st century and beyond."

IPCC, 5th Assessment Report (2013)

➢ We know something but not enough …

JET PROPULSION LABORATORY

Ice Sheet & sea level rise within IPCC cycle

