
Updates on the 
CESM2 Large Ensemble 

and Polar Amplification MIP



CESM2 Large Ensemble is underway!

• In partnership with IBS Center for 
Climate Physics, South Korea

• 1 degree spatial resolution
• 1850-2100 (historical and SSP370)
• 100 members
• Completion in ~ 7 months (Sep 2020)
• First 10 members by end of February



Initialization protocol to create 
ensemble spread

• CESM1 used a single ocean initial state, 
with tiny (10-14 K) perturbations to the initial 
atmospheric temperatures (“pertlim”).

• CESM2 will use a combination of different 
ocean initial states (“macro perturbations”) 
and pertlim (“micro perturbations”).



• 20 random ocean initial states
(taken from restart files every 10 years of the 

long 1850 control simulation during model years 
1001-1200 to avoid drift issues).
• 4 pre-selected ocean initial states based 

on AMOC phase (model years 1230-1301), 
with 20 “pertlim” members each. 

CESM2 Large Ensemble
 Initialization Protocol



• 20 random ocean initial states
(taken from restart files every 10 years of the 

long 1850 control simulation during model years 
1001-1200 to avoid drift issues).
• 4 pre-selected ocean initial states based 

on AMOC phase (model years 1230-1301), 
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CESM2 Large Ensemble
 Initialization Protocol

Allows assessment of AMOC initial condition 
memory, and ocean vs. atmosphere 
contributions to ensemble spread.
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Atmospheric circulation response 
to Arctic sea ice loss: 

Sensitivity to background SSTs
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Response to Arctic Sea Ice loss (DJFMA)
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Response to Arctic Sea Ice loss (DJFMA)
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Reminiscent of the non-linear 
response to warm vs. cold 

North Atlantic SST 
anomalies: “indirect” 

equivalent barotropic vs. 
“direct” baroclinic.

Deser et al. 2004 & 2007
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• Non-linearities in heating profiles associated 
with ice loss vs. ice gain (surface warming 
vs. cooling) (Magnusdottir et al. 2004; Deser et al. 2004 
& 2007)
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