

Current Status of VSL Halogen Chemistry in CESM 2.2: How Changes in Tropospheric SAD Fields Impact on Halogen Recycling and Washout?

Rafael P. Fernandez ICB-CONICET (National Research Council, Argentina)

CAM-Chem VSL Team:

Alfonso Saiz-Lopez (PI)

Carlos Cuevas, Qinyi Li, Fernando Iglesias-Suarez, Alba Badía, etc. (Atmospheric Chemistry and Climate Department, IQFR-CSIC, Spain)

> Doug Kinnison, J-F Lamarque, Simone Tilmes, etc. (National Center for Atmospheric Research, USA)

> > Boulder, CO, February 2021

Outline

Description (Technical + Historical) of VSL Halogen implementation in CAM-Chem

******Focused mostly on "processes/reactions" than in "impacts/implications"*

Main porpoise of highlighting main routines & namelist options for the non-VSL CAM-Chem user

All developments performed in CAM4 (CESM1)

Evaluate how changes on SAD & MET fields between CESM1 and CESM2 impact on tropospheric halogen abundances

Distinction between Simplified vs. Full VSL approaches

* Describe the implementation of new sources, sinks and re-partitioning

***** Evaluate spatial and vertical changes of tropospheric distributions

*Highlight major difficulties found for the het. Recycling implementation

Very Short-Lived (VSL) Halogens

Box 1-3. WMO 2018

1. Surface Emissions (VSL SGs)

user_nl_cam + mo_srf_emissions.F90

Chl-a dependent emissions for 6 VSLs

1.2 ppt (CHBr₃ + CH₂Br₂) = 6 ppt VSL^{Br}

1. Surface Emissions (VSL SGs)

user_nl_cam + mo_srf_emissions.F90

1. Surface Emissions (lodine)

user_nl_cam + mo_srf_emissions.F90 + mo_iodine_emissions.F90 + seq_drydep_mod.F90

1. Surface Emissions (lodine)

Saiz-Lopez et al., ACP, 2014

2. Sea-Salt Recycling (SSA-dehalogenation)

chem_mech.in + mo_usrrxt.F90

2. Sea-Salt Recycling (SSA-dehalogenation)

Bry enhancements below 500 hPa are > 2 times larger for FULL respect to EXPL

The omission of Bry ice-scavenging within the EXPL approach results in an infinite tropospheric lifetime of bromine atoms released in the upper troposphere

2. Sea-Salt Recycling (CESM1 vs. CESM2)

SAD levels in CESM2 are more than 5 times larger than in CESM1 We implemented 2 approaches for reducing the recycling efficiency:

- a. SAD CAP
- b. Reduce gamma efficiency

2. Sea-Salt Recycling (CESM1 vs. CESM2)

3. Washout on liquid and ice clouds

4. Tropospheric Ice Recycling (Br and Cl)

user_nl_cam + chem_mech.in + mo_usrrxt.F90 + mo_sadtrop.F90

4. Tropo & Strato Recycling (Iodine)

user_nl_cam + chem_mech.in + mo_usrrxt.F90 + mo_sadtrop.F90

Saiz-Lopez et al., GRL, 2015

Table 1-5. WMO 2018

Table 1-5. Summary of estimated VSL source gas injection (SGI) and product gas injection (PGI) contributions to stratospheric halogens (based on observations and model results).

VSLS Best Estimate (ppt)	SGI ¹	PGI ²	Total (SGI + PGI) ³
Chlorine	92 (75–110)	25 (8–50)	115 (75–160)
Bromine	2.2 (0.8–4.2)	2.7 (1.7–4.2)	5 (3–7)
lodine	0–0.1	0–0.7	0–0.8

4. Tropo & Strato Recycling (Iodine)

user_nl_cam + chem_mech.in + mo_usrrxt.F90 + mo_strato_rates.F90

Koenig et al., PNAS, 2020

SAD fields: CESM1 vs CESM2

Conclusions

*****VSL Halogen Chemistry is now included in CESM 2.2

- Tuning was required for heterogeneous processes due to changes in SAD, mostly on SAD SSLT and Liquid Clouds
- Washout efficiency and uptake for soluble reservoir species is performed both using NEU routine and the FR Approx. approach.
- Both Halogen SGs and PGs show equivalent spatial and vertical distributions as in CAM4-Chem (CESM1)
- Tropospheric Burden and Impacts are sensitive to changes in model spatial resolution and compsets (FR vs. SD) due to changes in SAD
- A proper representation of atmospheric halogen impacts requires using a Full Chemical Treatment of VSL Halogens in the troposphere and stratosphere

CONTACT

a.saiz@csic.es

Alfonso Saiz-Lopez (PI) Rafael P. Fernandez

rpfernandez@mendoza-conicet.gob.ar

Impact of VSL^{Br} on the OHA

Impact of Biogenic VSL^{Br}:

- Including VSL^{Br} improves the model-measurement agreement
- The biogenic bromine-driven OHA enlargement is ~5 million km², equivalent to the current chemical healing shrinkage estimated due to the phase-out of LL^{CI} and LL^{Br} emissions (Solomon et al., 2016).
- VSL^{Br} increases the max. OHA by 40% during the 2000th decade, and doubles the ozone hole extension during 2030th decade. Fernandez et al., ACP, 2017

Natural Halogens Buffers Tropospheric Ozone

Iglesias-Suarez et al., NCC, 2017