

Implementing CLUBB+MF in CAM

Adam R Herrington¹, Julio T. Bacmeister¹, Joao Teixera², Marcin Kurowski², Kay Suselj², Rachel Storer² & Mikael Witte^{2,3} ¹Naitonal Center for Atmospheric Research, ²NASA Jet Propulsion Lab, ³Naval Postgraduate School, Santa Cruz

Moist Convection in CAM6

Coupling CAM to CLUBB

Surface Driven Convection

(Chinet 2003; Siebisma et al. 2007; Suselj et al. 2013)

- Convective velocity scale $w_* = (g\beta Q_* z_*)^{1/3}$
 - $\theta_{v*} = \overline{w'\theta_{v'}}_{sfc}/w_*$
 - $q_{t*} = \overline{w'q_t'}_{sfc}/w_*$
 - $\sigma_w/w_*, \sigma_{q_t}/q_{t*}, \sigma_{\theta_v}/\theta_{v*} = \text{constants from LES}$
 - Initialize ensemble: $w_n(z=0)$ from n samples between $1.5 * \sigma_w 3.0 * \sigma_w$
 - $\theta_{v,n}, q_{t,n}$ from assumed covariances $C(w, \theta_v), C(w, q_t) = \text{constants from LES}$

How to integrate MFs into CLUBB

CLUBB turbulence

$$\frac{\partial \overline{r_t}}{\partial t} = -\overline{w} \frac{\partial \overline{r_t}}{\partial z} - \frac{\partial \overline{w'r_t'}}{\partial z} + \left. \frac{\partial \overline{r_t}}{\partial t} \right|_{forcing}$$

Differences from traditional EDMF

- ED is prognostic, high-order (i.e., CLUBB)
- ED and MF fluxes are not summed together prior to solving
- Rather the divergence of fluxes are taken separately and tendencies summed

How to integrate MFs into CLUBB

Differences from traditional EDMF

- ED is prognostic, high-order (i.e., CLUBB)
- ED and MF fluxes are not summed together prior to solving
- Rather the divergence of fluxes are taken separately and tendencies summed

$$\frac{\overline{r_t}^{t+\Delta t}}{\Delta t} + \frac{\partial}{\partial z} \overline{w'r_t'}^{t+\Delta t} = \frac{\overline{r_t}^{t}}{\Delta t} + \frac{\partial\overline{r_t}}{\partial t}\Big|_{forcing} \qquad \frac{\overline{w'r_t'}^{t+\Delta t}}{\Delta t} + \overline{w} \frac{\partial}{\partial z} \overline{w'r_t'}^{t+\Delta t} + \frac{\partial}{\partial z} \left(a_1 \frac{\overline{w'^3}}{\overline{w'^2}} \overline{w'r_t'}^{t+\Delta t}\right) + \overline{w'^2} \frac{\partial\overline{r_t}^{t+\Delta t}}{\partial z} \\
+ (1 - C_7) \overline{w'r_t'}^{t+\Delta t} \frac{\partial\overline{w}}{\partial z} + \frac{C_6}{\tau} \overline{w'r_t'}^{t+\Delta t} - \frac{\partial}{\partial z} \left[(K_{w6} + \nu_6) \frac{\partial}{\partial z} \overline{w'r_t'}^{t+\Delta t} \right] \\
= \frac{\overline{w'r_t'}^{t}}{\Delta t} + (1 - C_7) \frac{g}{\theta_0} \overline{r_t'} \theta_v^t$$

Related pairs of means and fluxes are solved simultaneously: 5-band diagonal matrix

$$\frac{\overline{r_t}^{t+\Delta t}}{\Delta t} + \frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t} = \frac{\overline{r_t}^t}{\Delta t} + \frac{\partial\overline{r_t}}{\partial t}\Big|_{forcing} \qquad \frac{\overline{w'r_t'}^{t+\Delta t}}{\Delta t} + \overline{w}\frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t} + \frac{\partial}{\partial z}\left(a_1\frac{\overline{w'^3}}{\overline{w'^2}}\overline{w'r_t'}^{t+\Delta t}\right) + \overline{w'^2}\frac{\partial\overline{r_t}^{t+\Delta t}}{\partial z} + (1 - C_7)\overline{w'r_t'}^{t+\Delta t}\frac{\partial\overline{w}}{\partial z} + \frac{C_6}{\tau}\overline{w'r_t'}^{t+\Delta t} - \frac{\partial}{\partial z}\left[(K_{w6} + \nu_6)\frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t}\right] \\ = \frac{\overline{w'r_t'}^t}{\Delta t} + (1 - C_7)\frac{g}{\theta_0}\overline{r_t'}\theta_v^t$$

Related pairs of means and fluxes are solved simultaneously: 5-band diagonal matrix

$$\frac{\overline{r_t}^{t+\Delta t}}{\Delta t} + \frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t} = \left|\frac{\overline{r_t}^t}{\Delta t} + \frac{\partial\overline{r_t}}{\partial t}\right|_{forcing} \qquad \frac{\overline{w'r_t'}^{t+\Delta t}}{\Delta t} + \overline{w}\frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t} + \frac{\partial}{\partial z}\left(a_1\frac{\overline{w'^3}}{\overline{w'^2}}\overline{w'r_t'}^{t+\Delta t}\right) + \overline{w'^2}\frac{\partial\overline{r_t}^{t+\Delta t}}{\partial z} + (1 - C_7)\overline{w'r_t'}^{t+\Delta t}\frac{\partial\overline{w}}{\partial z} + \frac{C_6}{\tau}\overline{w'r_t'}^{t+\Delta t} - \frac{\partial}{\partial z}\left[(K_{w6} + \nu_6)\frac{\partial}{\partial z}\overline{w'r_t'}^{t+\Delta t}\right] \\ = \frac{\overline{w'r_t'}^t}{\Delta t} + (1 - C_7)\frac{g}{\theta_0}\overline{r_t'\theta_v'}^t$$

Divergence Operator (integrated forward in time by CLUBB)

$$\left(\frac{d\bar{X}}{dt}\right)_{forcing} = \left(\frac{dF}{dz}\right)_{k} = \frac{1}{\bar{\rho}_{k}\Delta z_{k}} \left[\tilde{\rho}_{k+1/2}\boldsymbol{F}_{k+1/2} - \tilde{\rho}_{k-1/2}\boldsymbol{F}_{k-1/2}\right]$$

Options for the Fluxes

- Centered Differences
 k + 3/2
- Partial Upwind (**pupwind*)
- Upwind

_____ k+1/2

k + 1

k — — — — — — — — k

k - 1

Convergence Experiments (in dz) – ARM97

Convergence Experiments (in dz) – ARM97

area = 0: MF-plume ensemble

Current Implementation

Energy conservation, with E the vertically integrated energy:

 $E(\bar{T}_{before}, \overline{qv}_{before}, \overline{ql}_{before}) + dt * sfcfluxes = E(\bar{T}_{after}, \overline{qv}_{after}, \overline{ql}_{after})$

CLUBB is assumed to occupy the entire grid volume

 $\bar{X}_{after} = \bar{X}_{CLUBB}$

With Boundary Conditions

 $\overline{w'X'}_{clubb,sfc} = sfcfluxes$

area = 1: CLUBB turbulence

2-Volume Problem

Energy conservation, with E the vertically integrated energy:

 $E(\overline{T}_{before}, \overline{qv}_{before}, \overline{ql}_{before}) + dt * sfcfluxes = E(\overline{T}_{after}, \overline{qv}_{after}, \overline{ql}_{after})$

Conserving energy with two volumes requires:

 $\bar{X}_{after} = a\bar{X}_a + b\bar{X}_b$

a + b = 1

and Boundary Conditions for each volume:

$$\overline{w'X'}_{b,sfc} = sfcfluxes$$

$$\left[\sum_{n} w_{a,n} * (X_{a,n} - \bar{X}_b)\right]_{a,sfc} = sfcfluxes$$

b = CLUBB turbulence

a = MF-plume ensemble

Where we are now

- CLUBB+MF v0 is on cam_development
 - Surface driven convection (draws from an assumed w-pdf at sfc)
 - Plume profiles from a stochastically entraining plume model
 - Steady-state w-equation
 - Simple auto-conversion microphysics (Suselj et al 2019)
- CLUBB+MF v1.X
 - Energy conservation fix
 - Switched to upwind fluxes
 - Evaporation of rain, downdrafts & cold pool param (Suselj et al 2019)
 - Monte-Carlo sampling of the surface w-pdf (use CLUBB pdf?)
 - Experimental 2-volume framework (?)

