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Outline

* Define the problem

 The traditional wisdoms in climate/weather
modeling

— Non-scattering cloud in the longwave
— Blackbody surface in the longwave

* Why and where do the wisdoms break down?
 What is the impact on the simulated climate?
e Conclusions and Outlooks

Take-home messages: traditional wisdom breaks down in the polar region, and (far-IR) LW
scattering matters for the surface-atmosphere radiative coupling there.
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Cloud LW properties

frrrrjrrvrrvy
R

| |
= l
ek 0 i ey e — |0
! veneeens Water
»
» - I
x c
v 2 T - I
of 2
I I g o :
'_= -
el I I 3 I
| | - |
| [ = N W
N s | 4] 000 e
! I ] - I
(b) =
. I I I I
T -4
| | g I I
1 107k I I
I I
| |
P | ‘1 PR | ‘ i 1 A L | 2 L
500 1000 1500 2000 2500 3000
Wavenumber (cm” l]

Im(n) minimum <—> Scattering peaks

: single-scattering albedo
o = 1: 100% scattering
® =0:100% absorption

|
|
0.7 | = e e-Gopm) g . . .
e Water (De=20um) Scattering + Absorption = extinction (a.k.a.
0.6p d .
Docsssscesaed : : attenuatlon)
0.50 SOLD 'L0.00 1_':()0 ?(}.OO ?SADD 30‘00 (Kuo et aII 2017} J'AI\/IES)

Wavenumber (cm hy



B A
| MICHIGAN |

iVi In models:
only 3 out of 30+ models assumes cloud
being non-scattering in the longwave

4.9.5 Cloud emissivity

The clouds in CAM 4.0 are gray bodies with emissivities that depend on cloud phase, condensed
water path, and the effective radius of ice particles. The cloud emissivity is defined as

€ogg = 1 — e~ PrabsCWP (4.375)

where D is a diffusivity factor set to 1.66, Ku. is the longwave absorption coefficient (m?g~1),
and CWP is the cloud water path (gm~2). The absorption coefficient is defined as

Kabs = K1 (1 — fice) + Ki fice (4.376)

where k; is the longwave absorption coefficient for liquid cloud water and has a value of 0.090361,
such that Dk; 1s 0.15. k; 1s the absorption coefficient for ice clouds and is based on a broad
band fit to the emissivity given by Ebert and Curry’s formulation,

1
k; = 0.005 + —. (4.377)
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NCAR CESM 1.1.1 Technical Description



Why do such approximations?

* GCMs have been developed for decades. Don’t
brush off the traditional wisdoms easily

e Two facts need to be considered

— Traditional focus in on the tropics and mid-latitude.
* Polaris a focus only recently.
— How to make a decision for a scheme related
atmospheric physics?
* Run, compare, and make decision

* How to runit? AMIP run, SOM run, or fully-coupled run??



When radiation scheme was developed
decades ago ...

* Polar regionis not a

focus.

* Water vapor
abundance changes a
lot from the tropics to

polar regions
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®V&  The aftermath of small TCWV in polar regions (l)
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Flux (Wm'2 per cm'1)

The aftermath of small TCWV in polar regions (ll)
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Downward at Surface

Huang et al. (2018, J
Climate) incorporated the
surface emissivity into the
CESM
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Surface spectral emissivity g(v) is not one
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On top of above considerations:
seasonality matters

SW

LW
LH
ﬁ w ﬁ ﬁ SH Global Average

surface
LW
LH Arctic winter
SH
O o surface
/ Sea Ice /

Hypothesis: missing LW processes would affect Arctic winter T, the most, which then
affects subsequent processes and feedbacks.



Implementations

lce cloud  MC6 ice cloud optics
* A hybrid 25/4S LW scattering solver into
RRTMG_LW (Toon et al., 1989; Kuo et al., 2020)
Surface * Based on the spectral emissivity database
emissivity * Prescribed land spectral emissivity

* Prognostic spectral emissivity over sea ice and

ocean
* Major conclusions in Huang et al. (2018, J.
Climate)

Control case:

CESM v1.1.1/DoE E3SM v1

Codes available at

https://github.com/Huang-Group-UMICH/LW-scattering-polar-climate
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When realistc surface emissivity is also included

Changes in surface air temp
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Emissivity and scattering effect is comparable and the combined effect is
largely linear additive.
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DJF climatology energy budget over the Arctic (66.5°-90°N)

DSW  RSW OLR Clear-sky OLR TOA net upward
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Conclusions and discussions

LW scattering and surface spectral emissivity: two
missing LW physics in most GCMs

Together, they matters the most for polar surface
energy budget and surface climate

— But through radiative coupling between surface and
atmosphere

The Far-IR matters the most for the LW cloud
scattering here

— The last uncharted territory in the spectral
observations

Globally, LW scattering increases DLW by ~2 Wm™2
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Two far-IR Satellite Missions that | have participated in

EATH(IS LOSING ITS COOL .

FORUM: ESA 9t Earth Explorer mission
Current budget ~ 350M euros

Target Launch date: 2025/2026

Fourier Spectrometer with 0.5cmresolution

THERMOPILE

PREFIRE: NASA 4t EV-l mission

S35M project for 1-year nominal operation
Target Launch date: late 2021 /early 2022
Think it as a "far-IR MODIS”

My role: L2 spectral flux and surface
spectral emissivity retrievals, modeling

support



Previous studies on cloud LW scattering always used AMIP-type prescribed

SST/sea ice runs.
Hypothesis: without surface responses to the cloud LW scattering, its effect

cannot be fully revealed.

Prescribed SST an
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" Why LW scattering was ignored?

* Tropics/mid-latitude focus

 The decisions were made with AGCM run only: prescribed
SST/sea ice

* The surface-atmosphere LW coupling manifests the LW
scattering effect

Turn on LW scattering

§

Increases of LW absorption & downward LW flux

N

Not allowed in prescribed SST runs

Feedback to increase (T, q)
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