Tropical Gravity Wave Observations and WACCM6 Parameterized Gravity Waves from Convection: Implications for Simulation of the QBO

M. J. Alexander, C. C. Liu, J. Bacmeister,

M. Bramberger, A. Hertzog, J. H. Richter, and R. Vincent

Outline & Summary

I. Observations to evaluate gravity waves (GW) and Zhang-McFarlane convection

- Observations from long-duration balloons \rightarrow "Beres" GW Momentum Flux
- Beres non-OGW scheme with TRMM "convective sources"
- TRMM cloud and latent heating properties \rightarrow ZM convection parameters

II. Implications for GW Parameterization and Simulating the QBO

- New results from balloons on large-scale GW suggest $\Delta z \sim 200m$ to resolve realistic wave-mean flow interactions
- Possible changes to the Beres non-OGW parameterization to improve representation of unresolved wave driving.

Beres Scheme for Tropical Gravity Waves

WACCM6 Tuning Parameters

- "Convective fraction" CF = 5%
- WACCM5-6 uses D/4 to access the $K_{VqD}(c)$ lookup table in order to get a QBO.
 - $\blacktriangleright D \propto c$
 - \blacktriangleright So $D/4 \rightarrow c/4$
 - Apparently lower c and/or higher amplitudes needed for QBO
- Efficiency factor tunes the force (and QBO period)

Gravity Wave Momentum Flux at 60 hPa

Distributions of Absolute Gravity Wave Momentum Flux comparing:

- WACCM6-SD parameterized GW
- Global measurements of high-frequency waves from super-pressure balloons Feb-May 2010

WACCM6-SD lacks the rare but very large amplitude waves in the data

• Zonal mean zonal flux in WACCM is only 1/3 of the observed flux

Gravity Wave Momentum Flux at 60 hPa

Offline calculations with the Beres scheme

- Here using D, Q_0 obtained from TRMM SLH latent heating product
- Much longer tail of high momentum fluxes
- Since Momentum Flux ~ Q_0^2 this result suggests WACCM6 Q_0 too small

Distributions of Sub-grid-scale Q_0^2

Distributions of Sub-grid-scale Q_0^2

Simple retuning of the sub-grid-scale "Convective Fraction"

 CF_{TRMM} = 1 (single pixel) CF_{WACCM} = .03 (3%)

2-D Distributions of Sub-grid-scale $Q_{ heta}$ and D

Strongest Q_0 are most important gravity wave sources.

- Reducing WACCM CF
 from 5% to 3% increases
 Q₀ by factor 1.7.
- Momentum Flux ~ Q_0^2

Range of depths *D* are similar:

 TRMM comparison does not support D/4

Momentum Flux Spectrum at 60 hPa

WACCM6-SD...

- Shows the effect of assuming D → D/4 on the phase speed spectrum.
- Lacks the higher phase speed waves that will be important at WACCM altitudes above the QBO altitudes.

Beres-TRMM...

• Lacks low phase speed waves.

Low Phase Speed Waves to Simulate the QBO?

- Strongest wave momentum fluxes at low phase speeds are generated when shear at the top of convection.
- Waves modeled as stationary relative to the convective heating.
- This stationary component stands out as a prominent peak in the momentum fluxes.

Alexander, Richter & Sutherland (2006)

Low Phase Speed Waves to Simulate the QBO ?

Beres et al. (2004) formulas for the stationary wave component with TRMM convective latent heating sources.

- Momentum flux spectrum peaks at c = 5-10 m/s
- Large amplitudes might force QBO descent to lower altitudes?
- Enhanced westward wave flux for improving easterly phase descent?

Long Period Gravity Waves: PreConcordiasi

Tropical Super-Pressure Balloon Flights, February – May 2010

_ ms_

Vincent and Alexander [2020]: Analysis of low-frequency 1-3 day gravity wave events

1-day wave, horizontal wavelength 1000 km:

- Dissipation within 0.6 km above balloon level
- Zonal-mean zonal force $\sim -0.3-0.5$ m s⁻¹ day⁻¹
- Large fraction of the total needed to drive the QBO (at least for the duration of this event!)

Key Point: Short Vertical Wavelength (λ_z) Tropical Waves

Recent results from super-pressure balloons highlight:

- Large-scale tropical gravity waves drive the lower stratospheric QBO near wave critical levels where $\lambda_Z \rightarrow 0$ [Vincent & Alexander 2020; Hertzog 2020; unpublished results from Strateole-2]
- Dissipation closer to critical levels gives larger forces:

Force =
$$-\frac{1}{\rho} \frac{\delta Flux}{\delta z}$$

• Forces in models may be factors smaller than we observe!!!

Summary

I. Realistic forces from resolved waves require very high vertical resolution $\Delta z \sim 200$ m

- II. Beres scheme changes to make the tropical wave forcing of the QBO more realistic:
- $CF \rightarrow \sim 3\%$
- $D/4 \rightarrow D$
- Add stationary component (very simple to code, but would require tuning)

<u>References</u> (<u>www.nwra.com/~alexand/publications.html</u>):

- Alexander, M. J, C. C. Liu, J. Bacmeister, M. Bramberger, A. Hertzog, and J. Richter (2020): Observational validation of parameterized gravity waves from tropical convection in the Whole Atmosphere Community Climate Model. *JGR-Atmospheres*, (accepted).
- Vincent, R. A. and M. J. Alexander (2020): Balloon-Borne Observations of Short Vertical Wavelength Gravity Waves and Interaction With QBO Winds *JGR-Atmospheres*, *125*, e2020JD032779, doi:10.1029/2020JD032779