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Overarching Questions
• Can Machine Learning (ML) methods replace or augment physical 

parameterizations in atmospheric GCMs?
• How well can ML methods capture the parameterization scheme?

• Physical realism
• Dynamic range
• Computational complexity/efficiency & data availability

• How does the ML performance depend on the data selection & 
preparation, ML technique, and the architecture/hyperparameter 
choices? 

• We utilize an ML tuning tool called Sherpa
• How can we embed physical constraints?
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Answer some of these questions with the help of a GCM model hierarchy



Bridging the Gap: 
Model Hierarchy with Increasing Complexity

2D (xz-slice)
and 3D Dry 
Dynamical 
Core Tests

• Dry Held-Suarez test (Held and Suarez, BAMS 1994)
• Moist version of the Held-Suarez test (Thatcher and Jablonowski, GMD 2016)

GCMs with Simplified Physics
(for climate time scales) 

2



Idealized Model Setups: Dry Held-Suarez (HS)
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Dry 𝑇𝑇𝑒𝑒𝑒𝑒 (HS) 
• Simplified HS forcings are Rayleigh friction 

and a Newtonian temperature relaxation:

• Focus here: Can ML mimic the physics time tendency of the 
temperature T ?

Linear:
kv and kT are spatially-dependent
relaxation coefficients

Held and Suarez (BAMS 1994)



• Simplified MHS forcings (moist) are Rayleigh 
friction, a Newtonian temperature relaxation,

• Focus here: Can ML (neural network & random forests) mimic the 
physics time tendency of T? The precipitation rate?

Moist Version of the Held-Suarez test (MHS)
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Moist 𝑇𝑇𝑒𝑒𝑒𝑒 (MHS) 

L: Latent heat of vaporization
C: Condensation rate

Thatcher and Jablonowski (GMD, 2016)

PBL mixing (Laplacian), 
surface fluxes &rain



Machine Learning

• Determines a functional relationship within a given dataset without 
being programed to do so

• Requires a lot of data
• Our focus: Neural Network (NN) and Random Forest models
• Built using Keras (TensorFlow) & Scikit-Learn
• Optimized with Sherpa (ML hyperparameter optimization tool)
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Input Output

Hertel et al. (2020): https://arxiv.org/abs/2005.04048

https://github.com/sherpa-ai/sherpa

5

https://arxiv.org/abs/2005.04048
https://github.com/sherpa-ai/sherpa


Random Forests & Neural Networks
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RF image by Venkata Jagannath – Wikipedia NN image from WhyAxis

https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page
https://whyaxis.wordpress.com/2017/09/14/building-a-simple-neural-network-with-keras-and-tensorflow/


GCM Configuration
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• NCAR’s Community Earth System Model (CESM) version 2.1
• Finite-Volume (FV) CAM6 dynamical core at the resolution 1.9 x 2.5 

(96 x 144 grid points) with 30 vertical levels (from now on: 2 degree)
• Model is run for about 60 model years
• Output is collected every week: u, v, ps, T, Q, LHFLX, SHFLX, du/dt, 

dT/dt, dq/dt, PRECL
• 40 years is used for training, ~10 years for validation (total of 50)
• ≈ 6 years are used for testing

• Provides: 52 weeks/year x 50 years x 96 x 144 = 36 million columns

50 years for training and validation 4-year gap 6 years (test)

30 levels



Data & Preparation
• Training and testing is currently done ‘offline’
• Different ML models are trained for 

• dT/dt (temperature tendency)
• Precipitation rate

• Data Preparation:
• Samples grouped into vertical columns:

• reshape from (time, lev, lat, lon) -> (time*lat*lon, lev, nfeatures)
• Normalized to be unitarily invariant (subtract the mean at each level, 

divide by standard deviation), scaled to range [−1,1]
• Data are shuffled during training
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Closer Look at Dry HS Results: dT/dt (HS)
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CAM Model Machine Learning ML - CAM

NN

RF RF

NN



Increasing Complexity: Moist dT/dt (MHS)
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CAM Model ML - CAMMachine Learning (ML)

NN

RF

NN

RF



Analysis of the 2-deg Test Data: Moist dT/dt
• R2 (Coefficient of Determination) assessment reveals problem zones for both
• RF outperforms NN (higher correlations)
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Variance of the data

Residual sum of squares

High R2 (close to 1) desired. 
If R2 negative (white regime): 
unexplained variance of the ML model 
exceeds the total variance of the 
original data.

time-mean zonal-mean
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• 30 day animation of the precipitation rate
based on 3-hourly data***

• Comparison: CAM (1 deg) versus ML (NN)
• Precipitation bands are captured well

by the NN model
• Difficult problem: Precipitation relies on 3D 

T, p, q and the flow field in order to generate 
supersaturation (relative humidity > 100%)

• Supersaturation leads to condensation C 
which needs to be integrated:

Promising NN performance: 
Precipitation (1 degree)






13

• Time-mean zonal-means of the test data (68 days):
• CAM and ML (NN) closely resemble each other
• Precipitation peaks are well captured
• However: negative precip rates are possible in NN
• Physical constraints are needed

CAM Model ML Neural Network (NN)

Precipitation Rate (large-scale condensation, 1 degree)
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Summary                         Future Work
• Exploring boosted forests (XGBoost),

Convolutional Neural Nets (CNN), 
and 
other ML techiniques

• Porting these models to be easily 
coupled to CAM6 (Python-Fortran) & 
investigate numerical stability in an 
online mode

• Enforce physical constraints, advance 
physics-guided ML principles

• Add additional levels of complexity to 
the hierarchy (aquaplanet, full 
physics, etc). 

• Machine learning can emulate these 
simplified physical parameterizations.

• Both Neural Networks and Random 
Forests show skill. 

• Not making a claim that our current ML 
models are optimal (particularly NN).

• Further testing, hyper-parameter tuning 
and improved data selection are still 
needed. 



Thank You!

Contact
Garrett – glimon@umich.edu

Christiane – cjablono@umich.edu

mailto:glimon@umich.edu
mailto:cjablono@umich.edu
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