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Overarching Questions

« Can Machine Learning (ML) methods replace or augment physical
parameterizations in atmospheric GCMs?

 How well can ML methods capture the parameterization scheme?
* Physical realism

* Dynamic range
« Computational complexity/efficiency & data availability

* How does the ML performance depend on the data selection &

preparation, ML technique, and the architecture/hyperparameter
choices?

» We utilize an ML tuning tool called Sherpa
 How can we embed physical constraints?

Answer some of these questions with the help of a GCM model hierarchy
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Bridging the Gap:
Model Hierarchy with Increasing Complexity

Increasing complexity

Deterministic Tests > Statistical Tests
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GCMs with Simplified Physics * Dry Held-Suarez test (Held and Suarez, BAMS 1994)
(for climate time scales) * Moist version of the Held-Suarez test (Thatcher and Jablonowski, GMD 2016)
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ldealized Model Setups: Dry Held-Suarez (HS)
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« Simplified HS forcings are Rayleigh friction
and a Newtonian temperature relaxation:
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* Focus here: Can ML mimic the physics time tendency of the
temperature T ?
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Moist Version of the Held-Suarez test (MHS)
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« Simplified MHS forcings (moist) are Rayleigh
friction, a Newtonian temperature relaxation,
T 1 PBL mixing (Laplacian),

B surface fluxes &rain
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* Focus here: Can ML (neural network & random forests) mimic the
physics time tendency of T? The precipitation rate?
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L: Latent heat of vaporization
C: Condensation rate

Precipitation rate =
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Machine Learning
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Output

« Determines a functional relationship within a given dataset without

being programed to do so
* Requires a lot of data

* Our focus: Neural Network (NN) and Random Forest models
* Built using Keras (TensorFlow) & Scikit-Learn
* Optimized with Sherpa (ML hyperparameter optimization tool)

SHERPA

Hertel et al. (2020): https://arxiv.org/abs/2005.04048

https://github.com/sherpa-ai/sherpa



https://arxiv.org/abs/2005.04048
https://github.com/sherpa-ai/sherpa

Random Forests & Neural Networks

Random Forest Simplified
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RF image by Venkata Jagannath — Wikipedia NN image from WhyAxis
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https://community.tibco.com/wiki/random-forest-template-tibco-spotfirer-wiki-page
https://whyaxis.wordpress.com/2017/09/14/building-a-simple-neural-network-with-keras-and-tensorflow/

GCM Configuration

* NCAR’'s Community Earth System Model (CESM) version 2.1

* Finite-Volume (FV) CAM6 dynamical core at the resolution 1.9 x 2.5
(96 x 144 grid points) with 30 vertical levels (from now on: 2 degree)

* Model is run for about 60 model years

 Output is collected every week: u, v, p,, T, Q, LHFLX, SHFLX, du/dt,
dT/dt, dg/dt, PRECL

* 40 years is used for training, ~10 years for validation (total of 50) 30 levels
« = © years are used for testing

50 years for training and validation ‘ 4-year gap | 6 years (test)

* Provides: 52 weeks/year x 50 years x 96 x 144 = 36 million columns
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Data & Preparation

* Training and testing is currently done ‘offline’

* Different ML models are trained for
« dT/dt (temperature tendency)
 Precipitation rate

» Data Preparation:

« Samples grouped into vertical columns:
* reshape from (time, ley, lat, lon) -> (time*lat*lon, lev, nfeatures)

* Normalized to be unitarily invariant (subtract the mean at each level,
divide by standard deviation), scaled to range [—1,1]

» Data are shuffled during training

COLLEGE OF ENGINEERING
M CLIMATE AND SPACE SCIENCES AND ENGINEERING

UNIVERSITY OF MICHIGAN



Closer Look at Dry HS Results: dT/dt (HS)

CAM Model Machine Learning ML - CAM

Dry dT/dt CAM K/day

Dry dT/dt ML NN K/day
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Increasing
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Analysis of the 2-deg Test Data: Moist d T/dt

« R? (Coefficient of Determination) assessment reveals problem zones for both
* RF outperforms NN (higher correlations)

R2 Neulral Networlk (moist dIT/dt)

Random Forest (moist dT/dt)
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Variance of the data

High R? (close to 1) desired.

s s as o ] AN If R2 negative (white regime):
unexplained variance of the ML model
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Promising NN performance
Precipitation (1 degree)

30 day animation of the precipitation rate
based on 3-hourly data™*

Comparison: CAM (1 deg) versus ML (NN

Precipitation bands are captured well
by the NN model

Difficult problem: Precipitation relies on 3D
T, p, g and the flow field in order to genera
supersaturation (relative humidity > 100%)

Supersaturation leads to condensation C
which needs to be integrated:

1 Ps
Precipitation rate = ‘ / C dp
/O water 9 JO







Precipitation Rate (large-scale condensation, 1 degree)

« Time-mean zonal-means of the test data (68 days): Time-Mean Zonal-Mean (Test Data)
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Summary Future Work

« Machine learning can emulate these » Exploring boosted forests (XGBoost),
simplified physical parameterizations. aCr?QVOWt'O”a' Neural Nets (CNN),
* Both Neural Networks and Random other ML techiniques

Forests show skill * Porting these models to be easily
* Not making a claim that our current ML  coupled to CAM6 (Python-Fortran) &

models are optimal (particularly NN). investigate numerical stability in an

 Further testing, hyper-parameter tuning online mode

and improved data selection are still * Enforce physical constraints, advance
needed. physics-guided ML principles

« Add additional levels of complexity to
the hierarchy (aquaplanet, full
physics, etc).
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ST A Thank You!

Contact
Garrett — glimon@umich.edu
Christiane — cjablono@umich.edu
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