# Quantifying the sensitivity of tropical cyclone structure to momentum flux in CAM6

Kyle M. Nardi Colin M. Zarzycki Vincent E. Larson George H. Bryan

AMWG Winter Meeting 09 February 2021







## CAM6 produces notable biases in the structure of the TC PBL



## CAM6 produces notable biases in the structure of the TC PBL



In this talk, we wish to address two noted model biases:

The height of maximum tangential wind (too high)
The latent heat flux fraction (also too high)



**Hypothesis:** Certain parameters in the momentum flux parameterization can reduce model biases in the simulated TC PBL structure

**Question:** Given the large number of possibilities, how do we choose which aspects of the parameterization are important?



### Methodology



.....

A sensitivity analysis calculates the effect of changing particular inputs on model output *y* 



Morris One-at-a-Time (MOAT or MM) based on Covey et al. (2013) and Morales et al. (2019)



## The sensitivity analysis uses an idealized configuration of CAM6 with CLUBB

- Characteristics
  - RCE-type configuration
  - f-plane, aquaplanet, fixed SSTs
  - 56 vertical levels
  - Nominal grid spacing of 0.25°



- C<sub>d</sub> saturation at high wind speeds (Large and Yeager 2009)
- Cloud Layers Unified by Binormals Scheme (CLUBB):
  - Modified to use prognostic equation for momentum flux
  - Turbulent length scale diagnosed using eddy timescale ( $\tau$ )
  - τ based on wind shear, buoyancy, and proximity to surface



### We perturb the input parameters over fixed ranges that represent realistic values

| Input Parameter Name | Description                                                             | Default Value | Perturbed Range |                       |
|----------------------|-------------------------------------------------------------------------|---------------|-----------------|-----------------------|
| clubb_c14            | Constant for $u'u'$ and $v'v'$ terms                                    | 2.2           | 1.0-4.0         |                       |
| clubb_c7             | Low skewness term in C7 skewness function                               | 0.5           | 0.25-1.00       |                       |
| C6rt Lscale0         | Damping term for low skewness coefficient in C6rt skewness function     | 14.0          | 10.0-15.0       | Experimental<br>CLUBB |
| C4                   | Coefficient in the $w'$ return-to-isotropy term                         | 5.2           | 3.0-7.0         | parameters            |
| C_invrs_tau_bkgnd    | Background coefficient in formula to calculate $\frac{1}{\tau}$         | 1.0           | 0.5-4.0         |                       |
| C_invrs_tau_sfc      | Near-surface coefficient in formula to calculate $\frac{1}{\tau}$       | 0.1           | 0.05-0.40       |                       |
| C_invrs_tau_shear    | Shear coefficient in formula to calculate $\frac{1}{\tau}$              | 0.02          | 0.01-0.06       |                       |
| C_invrs_tau_N2       | Buoyancy coefficient in formula to calculate $\frac{1}{\tau}$           | 0.1           | 0.05-0.40       |                       |
| LY09_sat             | The 10-meter wind speed at which the surface drag coefficient maxes out | 33.0          | 20.0-50.0       |                       |



### Results



....

## Several parameters produce 1) high sensitivity AND 2) a consistent directional response



### Several parameters produce 1) high sensitivity AND 2) a consistent directional response

Given an increase in the parameter

**Directional Response** 



#### Sensitivity



For both highlighted metrics, several input parameters are influential and, when increased, consistently decrease the metrics

If we increase one of these inputs, we expect:1. Decreased height of maximum tangential wind2. Decreased latent heat flux fraction

...both of which are desired model improvements



## Increasing C\_invrs\_tau\_shear reduces the height of maximum wind and latent heat flux fraction



## Increasing C\_invrs\_tau\_shear decreases the turbulent length scale, TKE, and effective eddy diffusivity



**Reds: Increasing** *C\_invrs\_tau\_*shear **reduces** the magnitude **Blues: Increasing** *C\_invrs\_tau\_shear* **increases** the magnitude

PennState

## Increasing C\_invrs\_tau\_shear reduces the height of maximum wind and shifts peak vertical motion inward



**Reds: Increasing** *C\_invrs\_tau\_*shear **reduces** the magnitude **Blues: Increasing** *C\_invrs\_tau\_shear* **increases** the magnitude

PennState

## Increasing C\_invrs\_tau\_shear produces near-surface cooling and a layer of drying above z = 1 km



**Reds: Increasing** *C\_invrs\_tau\_*shear **reduces** the magnitude **Blues: Increasing** *C\_invrs\_tau\_shear* **increases** the magnitude

PennState

### Key Takeaways

- Sensitivity analysis helps identify model configurations that influence output metrics describing the structure of the TC PBL
- New updates to CLUBB permit momentum fluxes that can be targeted to specific atmospheric regimes
- Decreasing vertical mixing and eddy diffusivity in CLUBB produces more realistic TC wind profiles evaluated against observations and LES



### **Next Steps**

- A deeper analysis of the physical basis for the sensitivity of the output metrics is ongoing
- These perturbed configurations need to be tested in a more realistic global climate simulation
- If results are promising in global climate simulations, these perturbations can be used to improve subseasonal to seasonal forecasts of tropical cyclones



### Key Takeaways

- Sensitivity analysis helps identify model configurations that influence output metrics describing the structure of the TC PBL
- New updates to CLUBB permit momentum fluxes that can be targeted to specific atmospheric regimes
- Decreasing vertical mixing and eddy diffusivity in CLUBB produces more realistic TC wind profiles evaluated against observations and LES



### We thank our partners in this work:



Nardi, K.M., C.M. Zarzycki, V.E. Larson, and G.H. Bryan: Assessing the sensitivity in depicting the tropical cyclone boundary layer to1changes in the parameterization of momentum flux in the Community Earth System Model, *Mon. Wea. Rev.*, in prep.

Contact Info: kmn182@psu.edu Website: https://sites.google.com/site/kylemnardi/

