ENSO-Driven Suppression of Interannual Atmospheric Variability Over North America

Margaret Sutton, and Sarah Larson

North Carolina State University, Raleigh, NC;

The Importance of ENSO teleconnections

- Purpose is to show the atmospheric circulation and terrestrial impacts due to ENSO
- ENSO drives anomalous deep convection and latent heat release (Bjerknes, 1969)
- Perturbing global atmospheric circulation by Rossby wave train propagation (Ropelewski and Halpert, 1986)
- ENSO teleconnections effects temperature and precipitation globally (Barnston, 2014)
- These impacts can enhance the risk of natural disasters and limit natural resources (Guimarães Nobre et al, 2019)
- It is important to understand climate without the presence of ENSO, in order to better understand ENSO's impacts

NC STATE UNIVERSITY

Figures provided by: NOAA

Current ENSO Teleconnections Over North America

- ENSO Composite anomalies (Deser et al., 2018)
 - 18 El Nino 14 La Nina events during 1920-2013
 - 90% CI applied, Stippled regions are insignificant

Common methods of removing ENSO

- Removing ENSO through linear regression
 - ENSO contains nonlinearities (Frauen et al., 2014)
- Removing the signal from the interannual (2-6 years) frequency band
 - ENSO potentially has a low frequency signal (Wittenberg, 2015)
- Assuming that the Nino3.4 SST index is strictly an ENSO signal
 - Tropical instability waves (Tian et al., 2018)
 - Subtropical influences (e.g., thermally coupled modes; Larson et al. 2018)
- Defining the first Principle Component and assuming this is encompasses all of ENSO variability.
 - Lagged response to ENSO (Compo and Sardeshmukh, 2010)

- Suppression of the dynamical process that supports ENSO variability
- Bjerknes Feedback refers to the positive feedback loop between the ocean and atmosphere that reinforces the initial SST anomaly
- This experiment was done using a climate model due to the inability to remove the influence of the Bjerknes feedback in observational data

- NCAR CESM1-CAM4 is a fully coupled climate model
 - Present-day forcing, year 2000
 - Nominal 1° x 1° resolution
- CTRL: Control Experiment, simulates Earth's climate system
- NoENSO: Ocean is decoupled from anomalous wind stress in the tropical Pacific → short circuits the Bjerknes feedback
 - \rightarrow eliminates ENSO variability

90N

60N

30S

DJF CTRL SST Climatology

More Information: (e.g., Larson and Kirtman 2015, Larson et al. 2018)

NC STATE UNIVERSITY

0

Sutton and Larson | CVCWG 2021 | 7

20

15

°C

10

5

n

-5

60°W

25

60°W

25

30

30

20

- The largest anomalies in the Equatorial Pacific are found during the December –January February months
- Nino3.4 Region (5°N-5°S, 170°W-120°W)
- Niño3.4 Index is used to categorize ENSO events using a $\pm 0.5^{\circ}$ C threshold

NC STATE UNIVERSITY

Monthly anomalies are calculated using:

 $a'(x, y, t)_{CTRL} = a(x, y, t)_{CTRL} - \overline{a}(x, y, t)_{NoENSO}$ $a'(x, y, t)_{NoENSO} = a(x, y, t)_{NoENSO} - \overline{a}(x, y, t)_{NoENSO}$ NoENSO reference climatology is used

- Asymmetries between ENSO events
- El Niño is stronger than La Niña; projects onto the mean-state

DJF Z500 El Niño Composite Anomalies

Sea Surface Temperature

- CTRL run produces large anomalies in the Nino3.4 Index
- NoENSO run dampens the majority of the variability

NC STATE UNIVERSITY

Sea Surface Temperature

DJF CTRL SST Variance

- Percent difference is used to compare the CTRL run with the **NoENSO** run
- Goal: ENSO-driven impacts on the atmospheric circulation

Percent Difference =
$$\left(\frac{\sigma_{CTRL}^2 - \sigma_{NOENSO}^2}{\sigma_{NOENSO}^2}\right) * 100$$

NC STATE UNIVERSITY

Sea Surface Temperature

ENSO drives variability globally

NC STATE UNIVERSITY

Particularly in the Equatorial Pacific \bullet and Indian Oceans

> So, how does ENSO impact the Atmospheric Circulation?

ENSO suppresses

variability where

blue

ENSO enhances variability where red

Significance of the Suppression Zone

• Similar spatial pattern

NC STATE UNIVERSITY

• Large variance over the US and near the Aleutian low

DJF Z500 Percent Difference in Variance (95%)

DJF Z500 CTRL Variance 60°N 30°N 30°5 60°5 90° 60°E 120°E 180° 120°W 60°W 3000 1000 4000 2000 5000 DJF Z500 NoENSO Variance

ENSO-Driven Suppression

 The node between the ENSO-driven anomalous dipole results in reduced variability when ENSO is included

60° 30°N 30°S 60°S 90°S 60°E 120°E 180° 120°W 60°W -45 -30 -15 15 -60 0 30 45 DJF Z500 La Niña Composite Anomalies 60°N 30°N 30°5 60°S 60°E 120°E 180° 60°W 120°W 15 30 45 60 -60-45 -30m

DJF Z500 El Niño Composite Anomalies

Latitudinal Profile

Maximum of the Suppression zone is ~ 31% at 96°W

Jet level winds

DJF U200 Percent Difference in Variance (95%) DJF U200 CTRL Variance 60°N 60°N 30°N 30°N 0° 0° 30°S 30°S 60°S 60°S 90°S 90°S 0° 60°E 120°E 180° 120°W 60°W 60°E 120°E 180° 120°W 60°W 0° -90 -60 -30 30 60 120 150 75 0 90 90 15 30 45 60 (m/s)²

How does the suppressed upper level atmospheric circulation impact the surface?

NC STATE UNIVERSITY

ENSO-Driven Suppression of Precipitation Variability

- ENSO increases variability in the southeast US by about 60%
- ENSO suppresses more than 30% of variability south of the Great Lakes
- Region of large interannual variability

Surface Temperature

- Focusing on the Northern US region where surface temperature variability is large
- ENSO suppresses more than 20% of variability in the Northern US

Suppressed Zones impact on the Surface

- Suppressed precipitation is to the east of the upper level suppression
- Suppressed surface temperature is to the north of the upper level suppression
- Future Work:

- Distinguishing which phase is contributing more to the suppressed regions
- Looking into the different flavors of ENSO to evaluate their contribution

Conclusion

- ENSO increases variability in the atmospheric circulation over the western and southern regions of the United States.
- ENSO suppresses variability in the atmospheric circulation over the Northern United States.
- ENSO forces an anomalous dipole over the North American Continent. The "Suppression Zones" are located where ENSO anomalies are zero.
- The atmospheric suppression has terrestrial impacts through precipitation and temperature
- With a changing climate, ENSO events have been predicted to change in amplitude and frequency, which may impact the strength and frequency of ENSO teleconnections. (Liberto, 2018) (Meehl and Teng, 2007)

NC STATE UNIVERSITY

Email: mtsutton@ncsu.edu Twitter: @mtsutton22