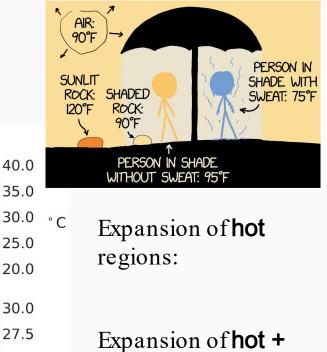
Widespread reductions in human labor capacity after 1.5 °C warming

Karena Yan Princeton University

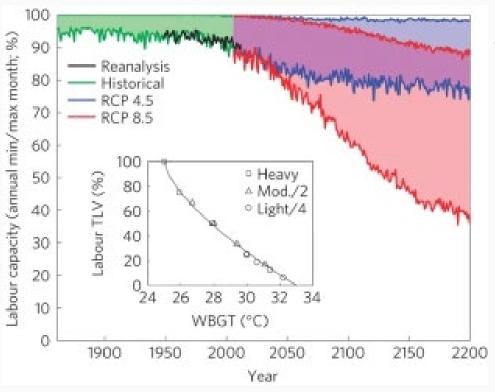
.


Motivation: Onset of Humid Heat

Temperatures rising due to climate change \rightarrow extreme heat and associated health risks \rightarrow worsened by high humidity

Wet-bulb globe temperature used to measure overall heat stress

1980-2000 Summertime Mean 2080-2100 Summertime Mean



humid regions:

Motivation: Reductions in Labor Capacity

Increased WBGT \rightarrow longer rest periods \rightarrow decreased labor capacity \rightarrow economic losses

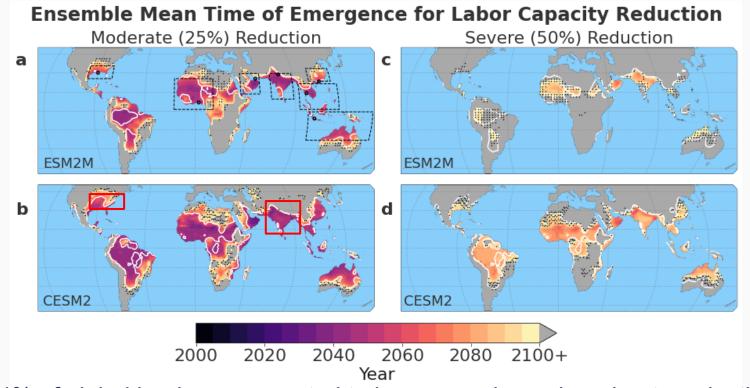
(Dunne et al., 2013)

Goals:

- Use ESMLEs to estimate time of first emergence for significant labor capacity reductions in vulnerable regions
 - Inform "timing of action" for adaptation efforts
- Characterize uncertainty in time of first emergence stemming from:
 - Climate model design
 - Internal climate variability

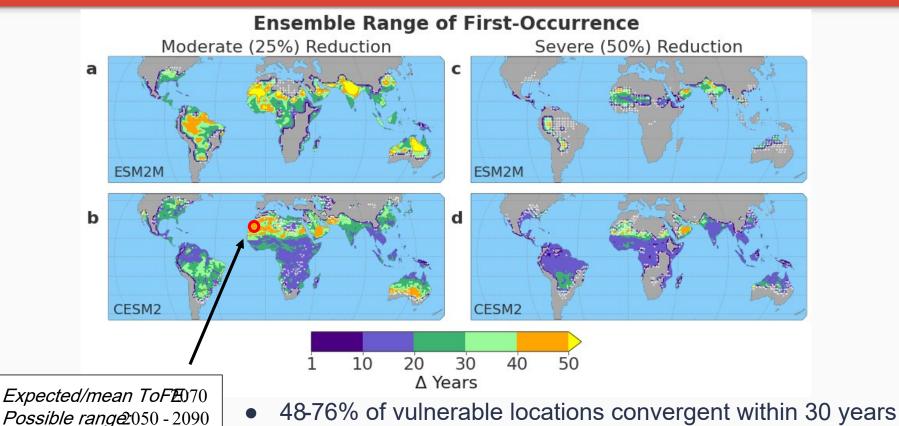
Earth System Model data

Compute labor capacity

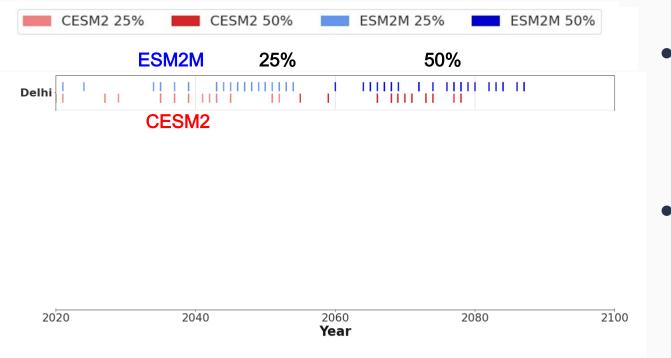

Define ToFEs

- GFDL-ESM2M (RCP 8.5) and CESM2 (SSP 3-7.0)
- 30 ensemble members each
- Daily mean metrics

- Calculate daily mean WBGT
- Convert to monthly mean labor capacity
- Split into historical (1980-2000) and future (2000-2100)


- Time of First Emergence
- First year with summertime capacity reduced by X% relative to historical baseline
- Thresholds: 25%, 50%

Results: Ensemble Mean Time of First Emergence


31-44% of global land area expected to have experienced moderate reductions by 21
Larger affected areas and earlier ToEs (~12 years) in CESM2

Results: Uncertainty from Internal Climate Variability

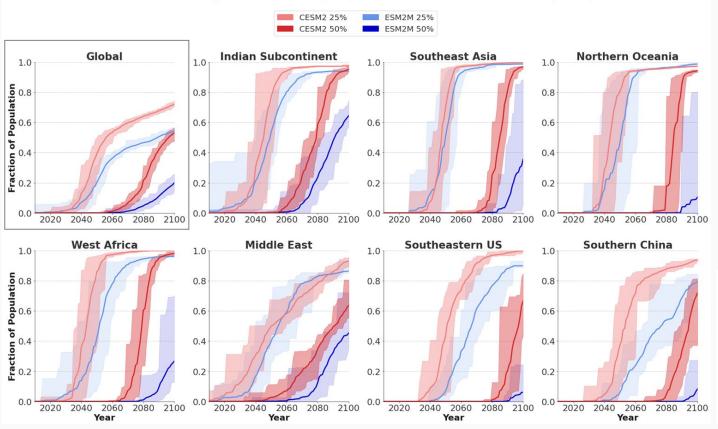
• Hotspots of internal variability in yellow/orange

Results: Ensemble Spread of "City" ToFEs

- High confidence: first occurrence of moderate reduction before 2060
- In general, significant internal variability at local scale

Each bar = one ensemble member

Results: Ensemble Spread of Regional Average ToFEs


CES	M2 25%	C	ESM2 50%		ESM2M 25%	ESM2	2M 50%
Delhi				I I			
Indian Subcontinent					 		
Southeast Asia				I			
Northern Oceania		П					
West Africa					Ш	1 11	
Middle East					1 11 1		I
Southeastern US						1	
Southern China			1.1.1.1				
Global Vulnerable Area							
20	20	204	40	206 Yea	-	2080	210

- Population-weighted average of grid cell ToFEs
- Internal variability uncertainty decreases at:
 - Larger spatial scales
 - Higher reduction thresholds

Results: Progression of Labor Capacity Reductions

Fraction of Population Having Experienced Reduced Labor Capacity

- 2100: 5970% of global population affected by moderate reductions
- **Rapid onset** of labor capacity reductions

Takeaways

Impacts	 Large populations threatened by labor capacity reductions over course of 21st century Rapid onset within vulnerable regions, starting as early as 2040s 				
Uncertainty	 Internal variability uncertainty Significant locally; decreases at larger spatial scales Model uncertainty reduces when normalizing by temperature 				
Implications	• Possibility ofsudden + severelabor capacity reductions past 1.5°C of warming: importance of mitigation				
	• Developing nations disproportionately at risk: require precautionary measures (e.g. workplace air conditioning)				

Thank you! *Questions?*