Marine ice sheet experiments with CISM

¹National Center for Atmospheric Research, ²Los Alamos National Laboratory

Goals

- ➤ Investigate CISM numerical properties in marine ice sheet simulations subject to ocean forcing (basal melt).
- ➤ Infer default configurations for Antarctic simulations in standalone and CESM Antarcticenabled simulations.

MISMIP+ framework experiments (Asay-Davis et al. 2016)

Melt function applied under ice shelves (Seroussi et al. 2018)

$$m = \begin{cases} 0 \text{ m a}^{-1}, & z_d > -50 \text{ m}, \\ 1/15 (z_d + 50) \text{ m a}^{-1}, & -500 \text{ m} < z_d < -50 \text{ m}, \\ 30 \text{ m a}^{-1}, & z_d < -500 \text{ m}, \end{cases}$$

 Z_d = ice shelf basal elevation

Strong buttressing due to presence of bed topography walls

Experimental protocol

6 experiments total (figure from Cornford et al. 2020)

Experimental setup: Basal friction laws

Several **basal friction laws** are common in ice sheet models:

- Weertman (aka power law):
 - > 0 at grounding line (GL).
 - Discontinuous at GL.
- > Schoof:
 - Asymptotes to a Coulomb law at GL.
 - Transitions smoothly from > 0 to zero at GL.
- > Intermediate:
 - Between Weertman and Schoof.
 - Transitions smoothly from > 0 to zero at GL.
 - 0 < transition length scale Intermediate < transition length scale Schoof

Basal friction illustration

Experimental setup: Basal melt parameterizations

Which option should we use?

Many modelers argue that NMP should be the default.

Experimental setup

Parameters:

- Resolution: 8km, 4km, 2km, 1km, 0.5km
- Basal friction laws: Weertman, Intermediate, Schoof
- Melt parameterization: FCMP, PMP, NMP

Constants:

- Shear stress factor = 10^4 Pa m⁻¹ a^{1/3}
- Tuned ice softness so that GL = 455 km +/- 1km
- Ice calves at x = 640 km

3 experiments:

Exp1 (moderate melt)
$$a = 0.3 \text{ m a}^{-1}$$

$$m_{max} = 30 \text{ m a}^{-1}$$

$$a = 0.3 \text{ m } a^{-1}$$

$$m_{max} = 150 \text{ m a}^{-1}$$

$$a = 0.05 \text{ m } a^{-1}$$

$$m_{max} = 30 \text{ m a}^{-1}$$

Exp1 (moderate melt)

- Faster convergence using FCMP or PMP than NMP.
- FCMP and PMP results always similar.
- Greater loss of grounded ice with higher resolution.
- Smaller ice loss for Weertman and Intermediate; greater ice loss with Schoof.

- Beneficial to allow some melt in cell containing the GL for all basal friction laws.
- Greater sensitivity to resolution and greater ice loss with Schoof than Weertman.
- With Schoof law, 1 km resolution is needed.
 Otherwise, resolution 2-4 km is sufficient.

Exp2 (high melt)

- Better convergence with PMP than NMP for all basal friction laws.
- Slower convergence with Schoof than with Weertman.
- With PMP, results at resolutions 1-4 km are within 10% of those at 0.5 km.

- Better convergence with PMP than NMP for all basal friction laws.
- Requirement of resolution is relaxed compared to other experiments.
- Accumulation rather than buttressing sets readvance time scale

Conclusion

- > Allowing some melt in the cell containing the grounding line is beneficial for CISM (default configuration).
- > With a Weertman law, a resolution of 2 km (arguably 4 km) is adequate to accurately diagnose grounded ice loss.
- > With a Schoof law, the resolution requirement becomes 1 km (arguably 2 km).
- > Re-advance of the ice sheet is controlled by the accumulation time scale.

Lesson learned

➤ Test your model!

Future work

> Redo experiments in more realistic setting (no smooth bed)

Thank you

Paper under review in TCD

Leguy, Gunter R., William H. Lipscomb, and Xylar S. Asay-Davis. "Marine ice-sheet experiments with the Community Ice Sheet Model." *The Cryosphere Discussions* (2020): 1-33.