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Overview

Motivation

* Melting of Greenland Ice Sheet (GrlS), which is strongly coupled with albedo, is the
largest contributor to sea level rise

This Work

* We’ve developed a radiative transfer model that explicitly represents snow and ice
albedo (SNICAR-ADv4) & includes relevant light absorbing constituents (LAC)

Preliminary Results

 SNICAR-ADvV4 (1) simulates the albedo of the entire snow-firn-ice spectrum, (2)
reproduces measurements well, and (3) includes the influence of LAC

CESM Relevance

* Dynamic ice albedo modeling within fully coupled climate simulations will improve
future sea level rise estimates



The Greenland Ice Sheet’s contribution to sea level rise

 The Greenland Ice Sheet is the largest cryosphere contributor to sea level rise

* The majority of mass loss from the GrlS in the last decade has been attributed to
surface melt
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Greenland Ice Sheet albedo constrains surface melt

* The albedo of the ice sheet varies widely based on the surface conditions
(snow, bare ice, melt ponds) and the light absorbing impurities present

* The south-west ablation zone is the darkest region on the GrlS
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Spatial
extent

The south-west dark zone is increasing in size and
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The south-west dark zone is primarily darked by bare ice
exposure and glacier algae colonization
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Higher snowline elevations lead to
more exposed ice and more total

Significant melt has been attributed to bare ice
exposure and glacier algae growth
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In 2017 between 4.4-6 GT of ice loss
could be attributed to surface darkening
by glacier algae
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Current CESM representation of land bare ice albedo

* Within CESM bare ice albedo is T
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Our (1%t step) solution: SNICAR-AD v4

* Asingle column heterogenous multilayer snow and ice model that explicitly
represents the optical properties of (1) snow, (2) ice, and (3) a range of light

absorbing constituents

e SNICAR-ADvV4 contains a combination of solutions that are already

employed within CESM and E3SM

CESM

E3SM
|

CLM snow radiative transfer scheme CICE radiative transfer scheme

Delta-
Eddington
SNICAR Adding

(Flanner and Doubling

Zender 2005) Solution
(Briegleb &
Light, 2007)

snow radiative transfer scheme
in MSI and ELM

SNICAR-AD

(Dang et al.,
2019)




SNICAR-ADvV4: model flow

Relative refractive index Environmental conditions
Size information Column characteristics

Model Outputs
Spectral downwelling flux
spectral albedo
broadband albedo

}

: absorption
MIE) SNICARv3
Calculations
(Flanner et
(Bohren and al., in prep)
Hoffman) .
Delta-
Eddington
Adding
. Doubling
Optical Depth (7) Solution
Optical properties for single scattering albedo (w) (Briegleb &

1. Ice grains
2. Air bubbles within ice
3. Light absorbing constituents

asymmetry parameter (g) Light, 2007)
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SNICAR-AD v4: model set up

- increasing density
- increasing grain
and bubble size
- decreasing
volume of air
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Albedo

SNICAR-ADv4 simulates a wide range of realistic albedos
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Results:
SNICAR-ADv4 comparison to Greenland Ice Sheet albedo

* SNICAR-Adv4 compares well with snow and ice measurements made in different regions
of of the Greenland Ice sheet with very different impurity contents and albedos
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Results:
SNICAR-ADv4 comparison to Antarctica albedo

* SNICAR-Adv4 compares well with snow, firn, and ice albedos made in Antarctica

1

Model
== == Clean Snow
Model

=== = Clean Firn
Model
White Ice
Model
= == Blue Ice

o
~
T

o
o]
T

Hemispheric Albedo

o
w
T

01

0.4 0.6 0.8 1 1.2 1.4 1.6
Wavelength (xm)

Measurements: Dadic et al. (2013) 14



Conclusion & Relevance for ESM

* Model scheme is already generally compatible with CESM & E3SM

* If implemented in a fully coupled model, dynamic ice albedo simulations will
improve projections of surface melt and sea level rise

* SNICAR-ADv4’s flexible model scheme and explicit optical properties allow it to
be utilized anywhere snow or ice is present

Thank you!
Questions?
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