Fine-scale vegetation-climatedisturbance interactions in the boreal forest

Can we use an individual-tree model to improve coarser scale models?

Adrianna Foster & Jackie Shuman NCAR Land Model Working Group Meeting February 24, 2021

Wildfire is a dominant driver of ecosystem dynamics in the boreal forest

Impacts:

Above- and belowground C storage Vegetation structure Species composition Soil depth Soil moisture Permafrost dynamics Albedo Surface roughness Energy & water cycling

Wildfire severity impacts post-fire organic layer depth and forest regrowth

Johnstone et al. 2010

Wildfire severity impacts post-fire organic layer depth and forest regrowth

Johnstone et al. 2010

UVAFME – an individual-based forest gap model

UVAFME:

- Individual-tree growth
- Annual diameter increment growth
- Soil dynamics:
 - Moisture, decomposition, permafrost
- Moss and shrub growth

UVAFME – an individual-based forest gap model

UVAFME predicts forest dynamics well

UVAFME predicts forest characteristics well

Foster et al. in prep

UVAFME predicts organic layer depth well

Ecoregion Aaska Boreal Interior Taiga/Boreal Cordillera Taiga/Boreal Plain Taiga Shield Mixed & Softwood Shield

Foster et al. in prep

Thonicke et al. 2010 Rothermel et al. 1972 Albini 1976 Van Wagner 1983 Peterson & Ryan 1986 Van Wagner 1972

- Fuel litter added annually to litter pools
 - 1-hour fuels: genus-specific leaf litter, twigs, moss
 - 10-hour fuels: small branches
 - 100-hour fuels: large branches
 - Shrubs & trees < 6 ft (1.83 m) in height
- Dead fuel decays from fresh to fibric to humic
 - Bulk density and SAV change across this time period
 - Simulate this change by scaling BD and SAV by percent remaining of the litter cohort

- Ignition events are probabilistic (not a constant rate)
- Based on mean average lightning strikes and fire danger index

$$p_{ign} = r_{light} \cdot FDI_{Fire Danger Index}$$

Lightning ignition rates from cloud to ground strike data

SPITFIRE in UVAFME active crown fire passive torching 30,000 -Critical I_{surf} (kW m⁻¹)

10,000

0

0

10

20

Canopy Base Height (m)

30

Smoldering combustion of organic layer

UVAFME-simulated biomass before and following a highintensity fire ($I_{surf} = 4300 \text{ kW m}^{-1}$)

Comparison to observed combustion data

Ignitions set at stand age and day of year from combustion dataset

Wind speed & moisture for day of burn forced from observations

Data from Walker et al. (2019) n = 343

Fuel combustion compares well with field data

Foster et al. in prep

We expect increasing fuel drying with climate change

Models also predict increasing deciduous fraction with climate change

Deciduous litter is in general less flammable than coniferous litter

I_R: reaction intensity (kJ m⁻² min⁻¹) ξ : propagating flux ratio energy available to heat unburned fuel

Climate change may change these legacy effects of fire

Climate change simulations with UVAFME

Foster et al. in prep

Historical climate

RCP 8.5

Change in legacy lock with climate change?

Fire intensity declines and fire return interval increases with climate change as a result of decreasing fuel loading

Foster et al. in prep

Change in fuel loading and fuel type (i.e. less moss) drive changes in fire regime in the future

Foster et al. in prep

How can we use this detailed model to inform Earth-system models?

Shared similarities

Size structure Process-based fire (SPITFIRE) Detailed vegetation-ecosystem connections Dynamic ecosystem assembly Based on "first principles" of ecology

UVAFME vs. FATES

Individual trees

Diameter growth & allometry

Annual growth

"Simple" parameters, fairly few

200 (or user-defined) plots/patches run independently, all from bare ground

Soil dynamics are plotspecific

Cohort model

Cohorts

Photosynthesis & allometry

Daily, sub-daily growth/allocation

More complex parameters

Patch creation & aggregation dynamics

Shared soil column

Force UVAFME with FATES environmental conditions

Difference between models will be a result of processes and interactions

Forcing:

- temperature
- precipitation
- active layer thickness
- soil moisture (ice & liquid)
- solar radiation
- wind speed
- relative humidity

What can we learn from combining FATES and UVAFME simulations?

FATES forcing: NASA GLDAS 25km (2000-2018) FATES - Soil carbon spin up then log stand

Nutrients: FATES – carbon only UVAFME – carbon & nitrogen

Difference in what limits growth with stand age and tree/cohort height

FATES – mortality rates

UVAFME - stochastic mortality

Size structure depicts two different landscapes

*Note different stem density scales

Strange episodic mortality in FATES – permafrost?

SS81 Black spruce dominant, with permafrost

Old Growth Conditions

DBH Size Class (cm)

Strange episodic mortality in FATES – permafrost?

Conclusions

- Gap models can act as a field data surrogate across broader regions
 - Data needs for validation can be prohibitive
- Ideal comparison with FATES because they are so similar
- Highlight processes that drive vegetation dynamics
- Consideration of structure allows for detailed vegetation-climatesoil feedbacks

Acknowledgements

Adrianna.Foster@nau.edu @LadyFortran https://uvafme.github.io

References

Albini, F. A. 1976. Estimating Wildfire Behaviour and Effects. USDA Forest Service General Technical Report, Intermountain Forest and Range Experiment Station, Forest Service, US Dept. of Agriculture, Ogden, UT.

- Foster, A. C., A. H. Armstrong, J. K. Shuman, H. H. Shugart, B. M. Rogers, M. C. Mack, S. J. Goetz, and K. J. Ranson. 2019. Importance of tree- and species-level interactions with wildfire, climate, and soils in interior Alaska: Implications for forest change under a warming climate. Ecological Modelling 409.
- Johnstone, J. F., T. N. Hollingsworth, F. S. Chapin III, and M. C. Mack. 2010. Changes in fire regime break the legacy lock on successional trajectories in Alaskan boreal forest. Global Change Biology 16:1281–1295.
- Rothermel, R. C. 1972. A mathematical model for predicting fire spread in wildland fuels. Page 50. Reasearch Paper INT, USDA Forest Service Intermountain Forest and Range Experiment Station, Ogden, UT.
- Thonicke, K., A. Spessa, S. P. Harrison, L. Dong, and C. Carmona-Moreno. 2010. The influence of vegetation, fire spread and fire behaviour on biomass burning and trace gas emissions: results from a process-based model. Biogeosciences 7:1991–2011.

Van Wagner, C. E. 1972. Duff consumption by fire in eastern pine stands. Canadian Journal of Forest Research 2:34–39.

- Van Wagner, C. E. 1983. Fire behavior in northern conifer forests and shrublands. Pages 65–80 *in* R. W. Wein and D. A. MacLean, editors. Role of Northern Circumpolar Ecosystems. John Wiley & Sons, New York.
- Walker, X. J., J. L. Baltzer, L. L. Bourgeau-Chavez, N. J. Day, W. J. De Groot, C. Dieleman, E. E. Hoy, J. F. Johnstone, E. S. Kane, M. A. Parisien, S. Potter, B. M. Rogers, M. R. Turetsky, S. Veraverbeke, E. Whitman, and M. C. Mack. 2020.
 ABoVE: Synthesis of Burned and Unburned Forest Site Data, AK and Canada, 1983-2016. ORNL DAAC.

UVAFME predicts soil moisture & permafrost well

UVAFME annual growth – DBH increment

