

Uncertainty analysis of land carbon prediction

Matrix approach

Yiqi Luo

Northern Arizona University, US

Yiqi.luo@nau.edu

ECOS^S Center for Ecosystem Science and Society at Northern Arizona University http://www2.nau.edu/luo-lab/?home

NCAR working group meeting, February 23-25, 2021

Matrix CLM5

https://github.com/chrislxj/ctsm, Branch: cn-matrix_v3.

Biogeochemical cycles

Vegetation carbon and nitrogen cycles

$$\frac{dC_{veg}}{dt} = BI_{Cup} + \left(A_{phc}(t)K_{phc} + A_{gmc}(t)K_{gmc} + A_{fic}(t)K_{fic}\right)C_{veg}(t)$$

$$\frac{dN_{veg}}{dt} = BI_{Nup} + \left(A_{phn}(t)K_{phn} + A_{gmn}(t)K_{gmn} + A_{fin}(t)K_{fin}\right)N_{veg}(t)$$

Soil carbon and nitrogen cycles

$$\frac{dC_{soil}}{dt} = I_C + \left(A_{hc}\xi(t)K_h + V(t) + K_f(t)\right)C_{soil}(t)$$
$$\frac{dN_{soil}}{dt} = I_N + \left(A_{hn}\xi(t)K_h + V(t) + K_f(t)\right)N_{soil}(t)$$

Lu et al. 2020 JAMES

e.g., Ecosystem C stock

Advantages

Simplicity in model structure

High modularity in code

Clarity in diagnostics

Computational efficiency in spin-up

Cuijuan Liao 9:35 Thursday

Friedlingstein et al. 2006

Third Assessment Report

C⁴MIP

Friedlingstein et al. 2006

IPCC AR5

CMIP6

Matrix approach to uncertainty analysis

All model in a unified matrix form

Transfer among C pools

_1	A_2	A_3	A_4	A_5	A_6	A_7	
-2	0	0	0	0	0	0	
)	1	0	0	0	0	0	
0.71	0	1	0	0	0	0	
0.29	-1	0	1	0	0	0	
)	0	-0.45	-0.28	1	-0.42	-0.45	
)	0	0	-0.28	-0.3	1	0	
)	0	0	0	-0	-0.03	1	

 $= \dot{B} \times u(t) - (A\xi \dot{K} + V) \times X(t)$

Baseline C turnover rate

K_1	K_2	K_3	K_4	K_5	K_6	K_7
2.74E-03	0	0	0	0	0	0
0	6.84E-05	0	0	0	0	0
0	0	9.13E-03	0	0	0	0
0	0	0	4.72E-04	0	0	0
0	0	0	0	6.84E-03	0	0
0	0	0	0	0	5.48E-05	0
0	0	0	0	0	0	1.37E-06

C pool

 Date
 Non_woc Woody
 Fine_litt(CWD
 Fast_SOC Slow_SO Passive_5

 1/1/2011
 398.159
 4560.57
 85.1473
 1327.14
 100.297
 6849.03
 10221.8

 1/2/2011
 397.835
 4560.58
 85.1471
 1327.14
 100.297
 6849.03
 10221.8

 1/3/2011
 397.51
 4560.48
 85.1467
 1327.14
 100.297
 6849.03
 10221.8

 1/4/2011
 397.51
 4560.38
 85.1462
 1327.14
 100.297
 6849.03
 10221.8

 1/4/2011
 397.51
 4560.38
 85.1452
 1327.14
 100.297
 6849.03
 10221.8

 1/5/2011
 396.866
 4560.3
 85.1452
 1327.14
 100.297
 6849.03
 10221.8

 1/6/2011
 396.542
 4560.21
 85.1451
 1327.13
 100.297
 6849.03
 10221.8

 1/7/2011
 396.219
 4560.11
 85.1433
 1327.13
 100.297
 6849.03
 10221.8

 1/7/2011
 395.576
 4550.02
 85.142
 1327.13

Vertical mix

Tr_1	Tr_2	Tr_3	Tr_4	Tr_5	Tr_6	Tr_7
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0
0	0	0	0	0	0	0

C change rate

Enging Hou 1:30pm Thursday

dX(t)

dt

 Date
 Scaler1
 Scaler2
 Scaler3
 Scaler4
 Scaler5
 Scaler5
 Scaler5

 1/1/2011
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.29812
 0.2981

Environmental scaler

What did we learn from Enqing's study?

- Model structure does not matter for projecting carbon dynamics
 - It may be important to represent different biological and/or geochemical processes
- •Residence time, in addition to forcing and carbon input, matters for projecting carbon dynamics.
- •Not about eliminating model-model differences
- Matrix approach makes model uncertainty a tractable issue
 An analytic framework to understand and quantify model uncertainty

What did we learn from Enqing's study?

- Model structure does not matter for projecting carbon dynamics
 - It may be important to represent different biological and/or geochemical processes
- •Residence time, in addition to forcing and carbon input, matters for projecting carbon dynamics.
- •Not about eliminating model-model differences
- Matrix approach makes model uncertainty a tractable issue
 An analytic framework to understand and quantify model uncertainty

Evolution of NCAR's land model

In the modeling world, it all makes sense: carbon is cycling faster when nitrogen processes are added but slower when vertical profiles are added.

Would that happen in the real world?

Would carbon processes in the real-world change with different processes being modeled?

Model structure, parametrization, and prediction

Structure I

When we use two model structures to estimate two sets of parameters, we generate similar predictions

Structure

Changed structure

When we change model structure without corresponding changes in parameters, we generate different predictions Adding vertical profiles leads to overestimation of soil carbon in deep layers By CLM4.5/5

PROcess-guided deep learning and DAta-driven modelling (PRODA)

Feng Tao Thursday morning

Re-parameterization is required when model structure is modified

Summary

- Matrix approach makes the uncertainty analysis a transparent, tractable issue
- When we change model structure, parameter values need to change accordingly. Otherwise, the model projects different trajectories of carbon dynamics.
- Re-parameterization becomes essential each time after model structure is modified.
- PRODA is an approach that combines data assimilation and machine learning with matrix models. It makes it possible to integrate big data with complex models

4th Training course May 17-28, 2021 New Advances in Land Carbon Cycle Modeling https://www2.nau.edu/luo-lab/?workshop Lifen.jiang@nau.edu

