

Plan for modelling lateral flow of DOM in CLM

(github issue #1216)

Devaraju Narayanappa Section for Meteorology and Oceanography, Department of Geosciences, University of Oslo, Norway. 24 Febraury 2021

Dissolved Organic matter (DOM)

- DOM is defined as the organic matter fraction in solution that passes through a 0.45 µm filter.
 DOM is often quantified by its carbon content and referred to as DOC.
- The high-latitude soil carbon reservoir may amount to ~1330-1580 PgC (Hugelius et al 2013,2014; Tarnocai et al., 2009)
- Yearly lateral flux of carbon from soils to running waters may amount to about a 5th of net ecosystem carbon exchange (~400 TgC/yr) (Bowring et al 2019; McGuire et al 2009).
- Global estimates of terrestrial C inputs to inland waters is 5.1 PgC/yr (with high uncertainty, Drake et al 2018)

Global land models **ORCHIDEE** and **JULES** have DOC representation.

UiO **Content** University of Oslo

Why ?

DOM link with Ocean waters is important for Norway. Especially for COD spawning.

- Darker coastal waters,
- Climate warming,
- Cod spawning delays

(e.g. Parmesan 2006, Walther et al. 2002)

'Terrestrial ecosystem change impact on marine ecology'

How?

Make use of River routing models eg. MOSART Couple SoilBGC model with MOSART to solve mass balance equation for DOM

UiO: University of Oslo Detailed schematic of DOM input, transformation, & losses

Inputs:

- 1. Throughfall
- 2. Root exudate
- 3. Microbialysis
- 4. Humification
- 5. Litter/crop residue decomposition
- 6. Organic amendments

Outputs

- 7. Microbial degradation
- 8. Microbial assimilation
- 9. Lateral flow
- 10.Sorption
- 11.Leaching

Bolan et al 2011, Advances in Agronomy

The processes highlighted in blue are planned for implementation

Equations

INPUT

Plan to include:

Vertical transport (Soil layer process DOC; cryoturbation)

Diffusion co-efficient

Account for Net change in DOC to Carbon cycle balance

$$NEP = NPP - R_H + DOC_{net}$$
Add net change in DOC
from routing
$$\frac{\partial C_i}{\partial t} = R_i + \sum_{j \neq i} (i - r_j) T_{ji} k_j C_j - k_i C_i + DOC_{net}$$
Liao et al (2019)

Runoff Evaluation

Runoff (mm/yr) under Different regimes

H1:

Dominant snowmelt high water. 3 months with the highest average runoff belong to spring or early summer (typically May-July)

L1: Dominant low water flow in winter, caused by snow accumulation. 2 months with the lowest runoff both belong to winter or early spring (typically: February-March).

H3: Dominant rain highwater

L3: Dominant summer low water

River Discharge Evaluation

THANK YOU FOR YOUR ATTENTION