NeverWorld 2

The idealized component of the Eddy Energy and Ocean Transport CPT Neeraja Bhamidipati Princeton University / NOAA-GFDL with Alistair Adcroft, Robert Hallberg, Stephen Griffies, and Laure Zanna Princeton University / NOAA-GFDL / NYU

Funded by

NeverWorld 2

• Goal

- Testbed for implementation and evaluation of extant (and future) SGS eddy parameterizations
- Fair treatment and test of all parameterizations
- Why idealized?
 - Implementation and evaluation need a ground truth
 - Can afford ultra-fine resolution
 - Simpler to understand
 - Sandbox to develop analyses
 - Just a stepping stone
 - Next stage is to apply much of what we are doing with NW2, to a realistic ocean model (OM4_05)

- Why "2" or new?
 - Zonally uniform channel models miss role of topography
 - NeverWorld 1 from Khani et al,
 2019; Jansen et al 2019
 - single hemisphere
 - wanted to revisit topographic roughness
 - Considered "Hogglantic"s and other idealized configurations
 - Opted for simpler adiabatic option
 - We want to be able control topographic "spectrum"

NeverWorld 2 details

CESM-OMWG / CPT workshop

3

NeverWorld 2 model

Stacked Shallow Water Equations
 Cheap

 $\partial_t v_k + q_k \hat{k} \times (vh)_k + \nabla K_k + \sum_{l=1}^n g'_{l-\frac{1}{2}} \nabla \eta_{l-\frac{1}{2}}$ $= \frac{1}{\rho_c} \partial_z \tau + \partial_z \kappa_v \partial_z v - \nabla A_s \cdot \nabla^3 v$ = 0 $\partial_t h_k + \nabla \cdot (vh)_k = 0$. hyper-viscosity $\eta_{k-\frac{1}{2}} = -D + \sum_{l=l}^{\infty} h_l$ $q_{k} = \frac{f + \nabla \times v_{k}}{h_{k}} \qquad \begin{array}{l} \eta_{\frac{1}{2}} & & \eta_{\frac{1}{2}} \\ \eta_{\frac{1}{2}} & & \eta_{\frac{1}{2$ z = -D(x, y)

(not much more than QG)

- Can span the equator (unlike QG)
- Same code (MOM6) as used in the realistic models (GFDL's OM4 and CESM2.2)
 - LANL is duplicating setups w. MPAS-O
- Strictly adiabatic
 - No complications from mixed layers, mixing, etc.

NeverWorld 2 solution

CESM-OMWG / CPT workshop

The parameterization task

• Treat fine resolution as "truth"

 What SGS fluxes yield a coarse resolution model with as similar solution as possible

$$- \partial_t h_k^c + \nabla \cdot (v^c h^c)_k = -\nabla \cdot (\langle v' h' \rangle^{SGS})_k$$

- Must define "similar"
 - Coarsening / filtering operators
 - Metrics e.g. $A_c h^c = \int_{A_c} h^f dA$
- Parameterization inputs?

$$\langle v'h' \rangle^{SGS} = f(v_1^c; h_1^c; v_2^c; h_2^c; ...;?)$$

• Model of eddy energy? Non-local?

Evaluate parameterizations offline

- Offline analysis of highresolution data
 - Coarsening & filtering
 - Testing/optimization of free parameters in parameterizations

- Online evaluation
 - Optimize whole model solution

Similar to Jansen et al., 2019

- Assumes
 - correct form of parameterizations
 - rest of coarse model is not biased

CESM-OMWG / CPT workshop

Testing parameterizations online

- Comparison of time-mean state across resolution
 - active parameterizations in coarse model
- Systematic biases
 - Largest biases are often near topography
 - likely due to standing eddies
 - Large scale biases in interior
 - deficiency of existing parameterizations

Taking advantage of the adiabatic mode

- Using passive tracers to test neutral diffusion parameterization $\partial_t (h_k^c \theta_k^c) + \nabla \cdot \left(\left((v^c h^c)_k + \langle v' h' \rangle^{SGS} \right) \theta_k^c \right) \right)$ $= -\nabla \cdot (h_k^c \kappa_{tr} \nabla_h \theta_k^c)_k$
 - Can optimize tracer diffusivities without affecting circulation

Also, e.g. Bachman et al., 2015, 2020

NeverWorld 2

CESM-OMWG / CPT workshop

Status and next steps

To date:

Accelerated fine-res initialization

- Checking diagnostics and closing budgets
- Developing analyses and metrics

Next up:

- Systematic evaluations of parameterizations
 - Long check list of NW2 evaluations
 - Constant κ GM, Visbeck et al., 1997, Danabasoglu & Marshall, 2007, Jansen, 2019, Bachman, 2019, Kong & Jansen, 2020Anstey & Zanna, 2017, Zanna & Bolton, 2020, Klocker & Abernathy, 2014, ...
- Evaluation in realistic model configurations
- Add range of resolutions

Postdoc @Princeton, apply by 15th

