

Submesoscale Ocean Ventilation Vertical fluxes conditioned on vorticity and strain reveal submesoscale ventilation

Dhruv Balwada¹, Qiyu Xiao², Takaya Uchida⁴ Shafer Smith², Ryan Abernathey³, & Alison Gray¹

¹University of Washington, ²New York University, ³Columbia University, & ⁴Institut des Géosciences de l'Environnement (CNRS)

Thursday, 4 February 2021 | CESM Ocean Working Group Meeting

COURANT INSTITUTE OF

Lamont-Doherty Earth Observatory COLUMBIA UNIVERSITY | EARTH INSTITUTE

Schematic of a front, Levy, Franks and Smith 2018

Observations suggest that tracers are transported from the mixed layer into the interior as thin filaments at fronts.

Schematic of a front, Levy, Franks and Smith 2018

Section across a front in a 1km simulation, Balwada, Xiao et al 2021

Observations suggest that tracers are transported from the mixed layer into the interior as thin filaments at fronts.

- While locally significant, do fronts play a major role in large scale tracer budgets?

- What are the dominant scales and processes involved in ocean ventilation?

Schematic of a front, Levy, Franks and Smith 2018

Section across a front in a 1km simulation, Balwada, Xiao et al 2021

A simulation suite to study mesoscale & submesoscale transport

Physical Setup

- Zonally periodic channel in MITgcm.
- 2000km X 2000km X 3km.
- Beta plane with central latitude ~ 35°S
- Horizontal grid size of 20, 5 and 1km.
- Vertical grid size of 1m near the surface, with 76 levels.
- Forced by winds and buoyancy restoring.
- 1km high meridional ridge to add some realism.
- Meridional boundaries are no flow walls, implying no deep overturning circulation.

Ζ

- KPP parameterization for mixed layer.
- QG Leith for small scale dissipation.

Tracer Setup

- Surface restoring to a constant value with a time scale of 72mins (very rapid, similar gas transfer velocity to moderate wind conditions in Southern Ocean).
- Started after the flow is in equilibrium.

- Deep reaching tracer (blue) to the south results from artificially

What you are looking at:

- Looking towards the surface of the ocean from depth.
- A tracer isosurface is visualized, with the colors indicating its depth (red is near surface, and blue is deeper).
- Deep reaching tracer (blue) to the south results from artificially deep mixed layers in the southern part of the domain, which are excluded from rest of the analysis.

Resolving submesoscales leads to more tracer uptake.

- Surface fluxes at 1km are ~50% higher than at 20km.
- The tracer transported below the mixed layer doubles from 20km to 1km.

Resolving submesoscales leads to more tracer uptake.

- Surface fluxes at 1km are ~50% higher than at 20km.
- The tracer transported below the mixed layer doubles from 20km to 1km.

Internal waves are a dominant part of the vertical velocities, but have no impact on vertical tracer fluxes.

Lessons from spectral analysis

Wavenumber-Frequency

Resolving submesoscales leads to more tracer uptake.

- Surface fluxes at 1km are ~50% higher than at 20km.
- The tracer transported below the mixed layer doubles from 20km to ıkm.

velocities, but have no impact on vertical tracer fluxes.

Lessons from spectral analysis

Wavenumber-Frequency

Time = 0.00 days

Based on Scherbina et al 2013

Time = 0.00 days

Time = 0.00 days

Time = 0.00 days

Increasing resolution Vorticity-Strain JPDF expands Outer extent of the JPDF is associated with smaller scales

-We will use conditional means to estimate the properties associated with different parts of the vorticity-strain space.

Increasing resolution Vorticity-Strain JPDF expands Outer extent of the JPDF is associated with smaller scales

effects of curvature. (Buckingham et al 2020)

- negative PV based with the consideration for

Impact of different flow features on surface divergence

Net impact of different flow features on tracer fluxes

Fronts have an outsized impact on vertical tracer fluxes.

Balwada, Xiao et al 2021 (in review at JPO)

Conclusions

- Increasing model resolution increases tracer ventilation 50% increase from 20 to 1km.
- Spectral methods reveal that internal waves play dominant role in increased vertical velocities but negligible role in increased tracer fluxes.
- Wide range of scales responsible for vertical fluxes near the surface, and this range shrinks to larger scales with depth.
- Surface vorticity and strain can be used together to decompose the flow into fronts, cyclones and anticyclones.
- Fronts have an outsized impact on tracer ventilation 20% of the flux through 5% of the surface area (this ratio likely increase even further with resolution).

Asymmetric front, with downwelling sliding under the front core.

Vertical asymmetry of submesoscale fronts

6 -4

