

2021 CESM OCEAN MODEL WORKING GROUP MEETING

Characterizing the Oceanic Mesoscale Flow by Coarsegraining

<u>Michele Buzzicotti</u>¹, Ben Storer², Stephen Griffies³, Hussein Aluie^{2,4}

¹Department of Physics, University of Rome Tor Vergata & INFN ²Department of Mechanical Engineering, University of Rochester ³NOAA Geophysical Fluid Dynamics Lab

⁴Laboratory for Laser Energetics University of Rochester

Our (LES / PDE) Approach

LES literature, Leonard (1974), Germano (1992), Eyink (1994), Meneveau et al. (1994), Ecke, Chen, Ouellette, ...

Coarse-graining (Filtering)

Additional Problems on the Sphere

example of coarse field

Datasets Analyzed:

Observations, **AVISO**:

Level 4 (L4) post-processed dataset of geostrophic currents

Gridded at a resolution of $0.25^{\circ} \times 0.25^{\circ}$

Spanning the time window covering the period **from 2010-2018** <u>Ref</u>:

Prod. ID: SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_008_047 Pujol, et al. *Ocean Science* 12.5 (2016): 1067-1090.

Model, NEMO:

Weakly coupled **ocean-atm**. assimilation + forecasting system Gridded at a resolution of **0.25° × 0.25°** Spanning the time window covering the period from **2016-2019** <u>Ref</u>: Prod. ID: GLOBAL_ANALYSISFORECAST_PHY_CPL_001_015

Hewitt, et al. *Geoscientific Model Development* 4.2 (2011): 223-253.

Methods:

- We only consider surface layer, $u = (u_{lat}, v_{long})$
- We consider the geostrophic velocity components
- Average over geographical regions, [15°: 90°] North & [15°: 90°] South of Equator
- Continents are treated as zero velocity

Coarse-graining the Total kinetic Energy:

A natural choice as fine kinetic energy looks more like: $\frac{1}{2} \rho(|\boldsymbol{u}^2| - |\boldsymbol{\overline{u}}_\ell|^2)$, but this quantity is not positive definite! [Vreman, Geurts, & Kuerten, JFM, 1994; Eyink & Aluie, PoF, 2009]

Jensen's inequality tells us: $E[f(x)] \ge f(E[x])$ for any convex f(x)

So in our case:

1] $f(\mathbf{u}) = u^2$ is convex 2] $\overline{\boldsymbol{u}} = G_{\ell} * \boldsymbol{u}$ with $G_{\ell} \ge 0$ is a weighted average

Hence,

$$\frac{1}{2} \rho \Big(\, \overline{|\boldsymbol{u}_{\ell}^2|} \, - |\overline{\boldsymbol{u}}_{\ell}|^2 \Big) \geq 0$$

Moreover, defining the spatial average as, $\{ ... \} = 1/A \int d^2 \mathbf{r} (...)$, we have, $\{G_\ell\} = 1$, hence:

 $\{\overline{|\boldsymbol{u}_{\ell}^2|}\} = \{\boldsymbol{u}^2\}$

 $\frac{1}{2} \rho\left(\left\{\overline{|\boldsymbol{u}_{\ell}^{2}|}\right\} - \left\{|\overline{\boldsymbol{u}}_{\ell}|^{2}\right\}\right) + \frac{1}{2} \rho\left\{|\overline{\boldsymbol{u}}_{\ell}|^{2}\right\} = \frac{1}{2} \rho\left\{|\boldsymbol{u}|^{2}\right\}$ Fine + Coarse = Total

[Sadek & Aluie, Phys Rew Fluids, 2018]

 $\ell \sim 250 \ km$

 $\ell \sim 250 \ km$

Total Energy: $\frac{1}{2}\rho |\boldsymbol{u}|^2$ Fine Energy: $\frac{1}{2} \rho(\overline{|u_{\ell}^2|} - |\overline{u}_{\ell}|^2)$ Coarse Energy: $\frac{1}{2} \rho |\bar{u}_{\ell}|^2$ 10^{2} 10^{1} 10^{0} 10^{-1} *ℓ/4* $\ell/2$ ℓ_d k0 $\ell \sim 400 \, km$

 10^{2}

 10^1

 10^{0}

 10^{-1}

Seasonality of Fine kinetic Energy

 $\frac{1}{2}\,\rho(\left\{\overline{|\boldsymbol{u}_{\ell}^2|}\right\} - \{|\overline{\boldsymbol{u}}_{\ell}|^2\})$

Scale-decomposition in different regions: [15°:90°] North / [15°:90°] South

- Most (\sim 70 %) of the energy in contained between 100-400 km

- The percentage of Fine-Energy at North of the Eq. is systematically lower wrt South of Eq.

Sadek and Aluie, Phys. Rev. Fluids (2018)

Measuring the spectrum is important

- 1. Quantifies the energy content of different spatial scales
- 2. Valuable information into cascade ranges, dissipation, turbulence intensity, upscale/downscale transfer (QG, 2D vs 3D, etc...) [Kolmogorov, Fjortoft, Charney, Salmon, Rhines, ...]
- 3. Topological structure of the flow. Power-law slopes are intimately related to the smoothness/roughness/fractal nature of fields.

- By subtracting, infer energy content at different scales
- Information on location and geometrical structure of that energy

- By subtracting, infer energy content at different scales
- Information on location and geometrical structure of that energy

Classical Mean-Eddy decomposition

What length-scales exist in a "mean" flow?

Reynolds Averaging: relies on *ensemble/time* averaging to decompose the *mean* from the *fluctuating* components of a field

Time averaged velocity field

$$\langle \boldsymbol{u} \rangle (\boldsymbol{x}) = \frac{1}{T} \int_{t_0}^{t_0 + T} \boldsymbol{u}(\boldsymbol{x}, t) dt$$

In terms of kinetic energy:

$$\langle E \rangle(\mathbf{x}) = \frac{1}{2}\rho |\langle \mathbf{u} \rangle|^2(\mathbf{x})$$

Eddy/fluctuating velocity field

$$u'(\mathbf{x}, t) = \mathbf{u}(\mathbf{x}, t) - \langle \mathbf{u} \rangle \langle \mathbf{x} \rangle$$
Fluctuating Kinetic Energy
$$E'(\mathbf{x}, t) = \frac{1}{2}\rho |u'|^2 \langle \mathbf{x}, t\rangle$$

Classical Mean-Eddy decomposition

AVISO-data E'(t)**-**10³ **Time snapshot of Total Energy** $E(t) = \frac{E'(t) + \langle E \rangle}{E} + \rho(\mathbf{u}' \cdot \langle \mathbf{u} \rangle)(t)$ 10^{2} $\begin{array}{c} \text{KE Density } (\text{J} \ / \ \text{m}^3) \\ 10^0 \end{array}$ E(t)8 years average 10^{-1} 10^{-2} $\rho(\boldsymbol{u}' \cdot \langle \boldsymbol{u} \rangle)(t)$ $-10^{-10^{-1}}$ -10^{2}

 -10^{3}

Seasonality time decomposed Kinetic Energy

[15°:90°] North

Energy spectra of time-averaged fields

Energy spectra of time-averaged fields

Classical Mean-Eddy decomposition

NEMO-data

Time snapshot of Total Energy $E(t) = \frac{E'(t) + \langle E \rangle}{E} + \rho(\mathbf{u}' \cdot \langle \mathbf{u} \rangle)(t)$

Spatio-temporal decomposition of observation and model data

Spatio-temporal decomposition of observation and model data

Spatio-temporal decomposition of observation and model data

The large-scales of NEMO geostrophic velocity have a longer decorrelation-time compared to the AVISO observed geostrophic velocity

- This can be an effect coming from a longer correlation in the forcing used by the model

1] lack of forcing from sub-mesoscales in NEMO

2] problems with atmospheric forcing

- Other ideas?

Conclusion

 Coarse-graining allows to achieve a precise and regional/local scale-decomposition of the velocity structures in the oceanic currents (Not possible with other methods)

To our knowledge this is the first time the energy spectrum of the global ocean is calculated, and we found that 70% of the geostrophic Kinetic Energy is contained between 100-400 Km.

- 2. Spatio-temporal decomposition highlights differences between observations and model data
- 3. Studying seasonality of the energetics at different scales we can measure time-delays energy picks which are hints of the energy transfer mechanisms, and it can teach us about the scales where the main forcing contribution is acting

Energy Leakage onto Land

