The impacts of increased atmospheric CO₂ on the 3-D structure of the AMOC in the North Atlantic Ocean

Sotiria Georgiou, Caroline A. Katsman, Michele Petrini, Raymond Sellevold and Miren Vizcaino

February 3rd 2021

European Research Council Established by the European Commission

Downwelling branch of AMOC in the North Atlantic

- During convection: downwelling within plumes is balanced by upwelling between them \rightarrow no net downwelling
- Theory predicts that significant downwelling can occur near the topographic boundaries
- The amount of near-boundary sinking has been linked to alongshore density changes (Spall and Pickart, 2001):

$$W_{\rm B} = \frac{g \, \Delta \rho_{\rm B} z_{\rm sink}^2}{2 \rho_0 f}$$

Downwelling in global ocean model

- ORCA ¼°
- strong vertical velocities near the boundaries

- ORCA 1°
- enhanced vertical velocities also in the ocean interior

Katsman et al.(2018)

Details of the model

- CESM2.1- CISM2.1
- ocean component [POP2]
 - 1° horizontal resolution
 - 60 vertical layers
 - GM-parameterization for tracer advection
- Pre-industrial run [PI run]
 - 300 years
- 1% increase in CO₂ until 4xCO₂ stabilization [1PCT run]

Muntjewerf et al.(2020)

AMOC in depth-latitude view

AMOC maximum at $z_{\rm sink}^{}=$ 928 m

Vertical velocity at z_{sink}=928 m [PI run]

near boundary strong vertical velocities

Vertical velocity at z_{sink}=928 [1PCT run]

Cumulative vertical transport along the path

Density along the path [1PCT run]

 $\Delta \sigma = \sigma(r, z) - \sigma(0, z)$

AMOC response to increasing CO₂ [1PCT run]

Summary & next steps

PI run:

• The near boundary downwelling is well represented

1PCT run:

- The strength of the downwelling branch of the AMOC weakens as CO₂ concentration increases
- Negligible net downward transport in the North Atlantic after 70 years
- North Atlantic is getting fresher \rightarrow weaker downwelling
- Role of the freshwater fluxes on the downwelling dynamics?
 - Differences with simulations without an interactive Greenland ice sheet component?