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The Southern Ocean and Biological
Productivity

Net Primary Productivity (grams Carbon per m2 per year)
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* Net primary productivity (fixing of Carbon by photosynthesis) is
relatively low in the Southern Ocean — despite abundance of
nutrients
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A) January Surface Mixed Layer Dissolved Iron (pM)
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B) June Surface Mixed Layer Dissolved Iron (pM)

* Due in part to limiting of iron (needed as catalyst in photosynthesis)
* Upwelling of NADW brings nutrients, but little dust deposition due

to remoteness
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Productivity in Coastal Polynya
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* Coastal polynyas are some of the most
productive regions in Southern Ocean

Annual Primary Production
(gCm?d)
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* Amundsen and Pine Island Polynyas rates an
order of magnitude above that of open ocean

* Limited ice cover, but also due to source of
micronutrients (i.e. iron)
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Ice shelves as source of biological iron
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Gerringa et al, 2012

* |ce-shelf melt has been implicated as important source of iron in upper ocean
* Melting of ice-entrained sediment
* Transport of iron in deep water



Aims of research
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|dealised study with MITgcm-BLING

Twelves, A. G., et al (2020). Self-shading and meltwater spreading control the transition from light to
iron limitation in an Antarctic coastal polynya. Journal of Geophysical Research: Oceans
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Boundary Conditions

MITgcm coupled with BLING
(Biogeochemistry with Light, Iron,
Nutrient and Gas; Galbraith et al
2010;Verdy and Mazloff, 2017)

Dynamic/thermodynamic sea ice
component, ice shelf-ocean
interactions

Idealised domain/forcing allows
larger number of experiments




Results: Different sources of iron
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“turning off” melting yields
negligible productivity

Dual sources of iron (GMW and
CDW)

Addition of GMW leads to 50%
greater iron concentrations —
but only ~20% greater
productivity
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Results: Varying irradiance and Oce. Temp.
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Ocean temp

Effect of ocean temp on melt rates
varies with depth

Bulk melt rates “linear” /symmetric in
ocean thermocline depth change
Small impact of irradiance...

* Productivity linear in
= irradiance change

 However, very nonlinear in
ocean thermocline change
(counter to effects on iron)



Melt-regulated spreading of Nutrients
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Strong melt leads to strong boundary current
Absence of strong current leads to circulation of surface waters by gyre

Effects seen in realistic ocean models
(Kimura et al 2017)
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Conclusions and Further Work

* |ce-shelf melt shown to be crucial in
upwelling of iron in coastal polyna

* Feedbacks of melt on ocean circulation
can influence surface “spreading” of
nutrients and productivity

* Importantly — interannual variability of
winds may be important, but not
investigated here
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Air-sea CO, flux with phytoplankton bloom (mol m s™)

Ongoing work

BLING coupled with
realistic physical model

of Amundsen (with P
Holland)

Preliminary results:
impact of biology on
CO2 fluxes



Upstream Meltwater (m)
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Results: Light and Iron limitation

Transition to Iron Limitation
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» Effects of limiting factors (Iron, light) can be examined, by treating them as nonlimiting
e Seasonal transition from light to iron limiting — timing of transition depends on location



	The effects of ice-shelf melt on the biological productivity of Antarctic coastal polynyas
	The Southern Ocean and Biological Productivity
	High Nutrient, Limited Chlorophyll
	Productivity in Coastal Polynya
	Ice shelves as source of biological iron
	Aims of research
	Idealised study with MITgcm-BLING
	Results: Different sources of iron
	Slide Number 9
	Melt-regulated spreading of Nutrients
	Conclusions and Further Work
	Slide Number 12
	Slide Number 13
	Results: Light and Iron limitation

