LA-UR-21-20975

An Update on Langmuir Mixing Parameterizations in CESM2.2 & Discussions on Wave Coupling

Qing Li (Los Alamos National Laboratory) with Alper Altuntas, Mike Levy, & many others in OMWG

Normalized vertical velocity variance

Langmuir turbulence enhances mixed layer entrainment

Scaling from Large Eddy Simulations

Stokes forcing

See Li et al., 2019, JAMES for discussions on other effects of Langmuir turbulence

Parameterization of Langmuir turbulence in KPP

Li et al., 2016, OM; Li & Fox-Kemper, 2017, JPO

Enhanced vertical mixing

- Enhancing the turbulent velocity scale by an enhancement factor
- Scaling derived from LES

$$\mathcal{E} = \left|\cos\theta_{\rm wl}\right| \left[1 + \left(3.1\,{\rm La}_{\rm SLP}\right)^{-2} + \left(5.4\,{\rm La}_{\rm SLP}\right)^{-2}\right]$$

Enhanced mixed layer entrainment

- Enhancing the entrainment at the base of the ocean surface boundary layer by enhancing the unresolved shear term
- Scaling derived from LES

CESM2.2

ed
$$U_{tL}^2(z) = \frac{C_v N(z) w_\lambda(z) |z|}{\text{Ri}_c} \left[\frac{0.15 w_*^3 + 0.17 u_*^3 (1 + 0.49 \text{La}_{\text{SL}}^{-2})}{w_\lambda(z)^3} \right]$$

Summer MLD

1980-2009: years 23-52 for JRA55do & 33-62 for CORE2

OBS: de Boyer Montégut et al. (2004) JRA55do: g.e21.GOMIPECOIAF_JRA.TL319_g17.CMIP6-omip2.001 **CORE2:** g.e21.GOMIPECOIAF.T62_g17.CMIP6-omip1.001 JRA55do-LF17: 20200517_LF17_GOMIPECOIAF_JRA-1p4-2018_TL319_g17

Winter MLD

1980-2009: years 23-52 for JRA55do & 33-62 for CORE2

OBS: de Boyer Montégut et al. (2004) JRA55do: g.e21.GOMIPECOIAF_JRA.TL319_g17.CMIP6-omip2.001 **CORE2:** g.e21.GOMIPECOIAF.T62_g17.CMIP6-omip1.001 JRA55do-LF17: 20200517_LF17_GOMIPECOIAF_JRA-1p4-2018_TL319_g17

m

Zonal mean

RMSE (m)

	Global	S of 30S	30S-30N
JRA55do	47.40	47.16	16.89
JRA55do- LF17	50.67	57.81	16.89
CORE2	62.74	45.20	20.55

The "Theory Wave"

An empirical estimate of the Stokes drift

Langmuir number

Langmuir enhancement factor

Li et al., 2017, OM

$$\begin{array}{ll} u_{0}^{S} \approx 0.016U_{10}, \\ V^{S} \approx 2.67 \times 10^{-5} g U_{10}^{3}, \\ k_{p} \approx 0.176 \frac{u_{0}^{S}}{V^{S}}, \\ k_{p}^{*} = 2.56k_{p}, \\ H_{SL} = H_{BL}/5, \\ H_{SL} = H_{BL}/5, \\ T_{1}(k, z) = e^{2kz}, \\ T_{2}(k, z) = \sqrt{2\pi k |z|} \mathrm{erfc}\left(\sqrt{2k|z|}\right), \end{array}$$

$$La_{SL} = \sqrt{\frac{u^*}{u_{SL}^S}},$$

 $\mathcal{E} = \sqrt{1 + (1.5La_{SL})^{-2} + (5.4La_{SL})^{-4}}.$

7

The "Theory Wave" Tests in CESM1 forced by CORE-II

Li et al., 2017, OM

Summer mean mixed layer depth (m)

00

90

80

70

60

50

40

30

20

10

45•N

45•S

No Langmuir mixing

Langmuir mixing with "Theory Wave"

.....

Li et al., submitted to GMD

An annual cycle at Ocean Station Papa

Wave coupling

- Wave component in CESM
 - WW3
 - A "theory wave" option in the "data wave" mode (DWAV)
 - enhancement factor for Langmuir mixing parameterizations
 - Other wave parameters?
- Wave coupling interface
 - Wave statistics passed to the coupler

An estimate of the Stokes drift profile -> Langmuir number & Langmuir

Wave statistics

- Stokes drift (e.g., surface Stokes drift partitions)
- Momentum fluxes, energy fluxes, breaking waves, etc
- COWCLIP wave statistics (significant wave height, mean wave period, mean wave direction, swell wave height)
 - COWCLIP standard: diagnosed offline from 6-hourly output
 - mean, maximum, 10th, 50th, 90th, 95th, 99th percentiles (monthly, seasonal and annual)
- CESM standard output from the coupler, but keep the option to turn on the WW3 output in the native format

11

_

Moving forward

- Langmuir turbulence parameterization in MOM6 via CVMix
- The "theory wave" as an option in the "data wave" mode (DWAV)
- Update WW3 to the latest version, wave grid
- Wave coupling interface:
 - Wave variables for parameterizations (e.g., Langmuir turbulence, wave-ice interactions)
 - Wave statistics for wave climate analysis (e.g., COWCLIP)
 - Thank you!

