Update on the CESM/MOM6 effort

Gustavo Marques, Alper Altuntas, Scott Bachman, Frank Bryan, Gokhan Danabasoglu, Ian Grooms, Bill Large, and Keith Lindsay

2021 JOINT CESM LAND ICE / OCEAN MODEL WORKING GROUP MEETING

February 3rd, 2021

Downloading CESM+MOM6

• Clone CESM GitHub repository: (~ 5 sec)

\$ git clone https://github.com/ESCOMP/CESM.git

 Check out the following CESM 2.2 tag, which includes MOM6 : (~ 1 sec) \$ cd CESM

\$ git clone -b cesm2.2_mom6_201113 https://github.com/alperaltuntas/CESM.git

- Check out externals : (~ 2 min)
 - \$./manage_externals/checkout_externals -o

Detailed instructions

https://github.com/ESCOMP/MOM_interface/wiki/Detailed-Instructions

COMPSET	Compatible Resolutions	Description		
СМОМ	T62_t061, T62_g16, T62_t025	MOM6 only, CORE2 NYF		
CMOM_IAF	T62_t061, T62_g16, T62_t025	MOM6 only, CORE2 IAF		
CMOM_JRA	TL319_t061, TL319_g16	MOM6 only, JRA55		
GMOM	T62_t061, T62_g16, T62_t025	MOM6 and CICE only, CORE2 NYF		
GMOM_IAF	T62_t061, T62_g16, T62_t025	MOM6 and CICE only, CORE2 IAF		
GMOM_JRA	TL319_t061, TL319_g16	MOM6 and CICE only, JRA55		
вмом	f09_t061	Fully Coupled		
▶ t061: tx0.66v1 ↓ "workhorse"	► t025: tx0.25v1 ► g16: gx1v testing	r6		
NCAR UCAR	/			

CESM "workhorse" configurations

	POP2	MOM6	
H. Grid	1.125° dipole w/ equatorial refinement	0.66° tripole w/ equatorial refinement	
V. Grid	z-coord., dz = 10 m @ surface, 60 levels	z*-coord. or hybrid (z*/isopyc), dz = 2.5 m @ surface, 65-85 levels	
Freshwater B.C.	Constant volume, virtual salt flux	Variable mass, natural B.C	
V. Mixing	CVMix-KPP + Langmuir	CVMix-KPP + Langmuir	
GM+Redi	Marshall N ² scaling	MEKE+GEOMETRIC scaling + GME backscatter	
H. Viscosity	Anisotropic Laplacian	Isotropic Laplacian + Biharmonic, via MEKE	
Solar penetration	Ohlmann (2003)	Manizza (2005)	
Advection	3 rd order upwind	Horiz. PPM, Vert. ALE w/ 3 rd order remapping	
Other params	Overflow, Estuary box model	TBD	
Coupling API	MCT, NUOPC	MCT, NUOPC	

Vertical coordinate exploration

- JRA-55 (v1.3), run for one cycle (58 years)
- Initial Conditions: T and S from WOA18
- SSS restoring from WOA18 monthly climatology (~ 60 m/year)

List of experiments:

Experiment	coordinate system	# of vertical layers
Z_N65	Z*	65
Z_N75	Z*	75
H_N75	Hybrid (z*/isopycnal)	75
H_N84	Hybrid (z*/isopycnal)	84

• Compare last 30 years against a similar experiment using POP2

Global mean potential temperature drift

UCAR

Global Mean Ocean Potential Temperature

Potential temperature bias (°C) at z = 700 m

Winter mixed layer depth, $\Delta \rho$ = 0.03 (m)

Poleward Heat Transport (Global)

Atlantic meridional overturning circulation (AMOC)

AMOC time series @ 26N and 45N

Mass contribution from water exchange in CESM/MOM6

liquid, solid (frozen) and vapor

Heat exchange from adding/removing mass (e.g., frozen runoff):

Latent \rightarrow - mass x L_f (latent heat of fusion) \checkmark

Sensible (enthalpy) \rightarrow - mass x temp x ρ x cp (heat capacity) MOM6 \checkmark CESM

Are these important? **YES** <u>In a one-year fully-coupled run</u> Net heat flux from CPL: -0.60 W m⁻² Heat content change in MOM6: -0.82 W m⁻² Difference (MOM6-CPL): ~ -0.22 W m⁻²

- A preliminary functional version of MOM6 was released in CESM 2.2
- The same code base is being used for a wide range of applications: simplified, regional and global (workhorse and high-resolution)

MOM6 versus POP2 in CESM:

 Overall, the quality of forced (G-compsets) solutions with MOM6 are comparable with a baseline solution with POP. However, locally some places are better/worse with MOM6

Vertical coordinate exploration:

- Significant reduction in the heat uptake and T&S biases when using a hybrid isopycnal-z* coordinate (consistent with other studies)
- Other metrics (e.g., PHT, AMOC, MLD) are also better represented in simulations using a hybrid isopycnal-z* coordinate

Next steps: workhorse development

- Reconcile energy exchange with other CESM components
 - * Conservative mass/enthalpy exchanges (*winter 2021*)

Additional parameterizations

- * Coupling to wind-wave model and associated mixing (spring 2021)
- * Estuary/fjord/river plume parameterization (summer 2021)
- * Gravity current/overflows (?)
- Continued experimentation, tuning and bias reduction (*eternity*)
- Additional resolutions
 - * Low-res: BGC, paleo, prototyping (?)
 - * Eddy-permitting: Leverage work in CPT

Possible strategies for computing sub-shelf basal melt rates:

- 1) Compute basal melt rates in the ice sheet model, using T and S passed from the ocean and regridded to the ice sheet
- 2) Compute basal melt rates in the ocean, and have the coupler regrid it to the ice sheet (already done via MCT for MISOMIP1)
- 3) Compute basal melt rates in the coupler, using information received from both ocean and ice sheet

Participate in MISOMIP2:

- Setup regional configuration(s) and perform initial analysis
- Leverage work from a PhD student, collaboration between Utretch University (van de Berg, van de Wal) and NCAR (Lipscomb, Leguy, Marques)

Thank you! gmarques@ucar.edu

Extra slides

CESM Aqua and Ridge: seasonal cycle of SST (yr 400)

Sea Surface Temperature (°C)

-2

Led by Xiaoning Wu

Regional application

Eastern tropical Pacific

SST [°C]

Running regional configuration using same code-base (CESM/MOM6)

One-way downscaling for now

Global high-resolution

G-compset, tx0.1 (same as POP), JRA-v1.3

Cost/throughput

	MOM6			POP
	GFDL-OM4p5	CESM - MCT	CESM - NUOPC	POP gx1v6
DT baroclinic	1800	1800	1800	3600
DT thermo	7200	3600	7200	3600
DT couple	3600	3600	3600	3600
NK	75	63	63	60
NI	720	540	540	320
NJ	576	458	458	384
Tot. # Pts	31.1M	15.5M	15.5M	7.4M
PEs	1724	864	864	216
#Pts / PE	18k	18k	18k	34k
Sim Yr/ WC-Day	14.8	19.1	25.0	53.1
PE-hrs/ Sim. Yr	2794	1178	900	97.6
Cost / Pt / Yr	6.8	5.8	4.3	1

Numerical choices

- Boussinesq (ρ_0 = 1035 kg m³)
- Split time stepping
- Baroclinc DT = 1800 s
- Tracer DT = MCT couple DT = 3600 s
- Barotropic DT: automatically set based on the maximum stable value
- Apply diabatic and thermodynamic processes before stepping the dynamics forward
- Equation of state from Wright (1997)
- Quadratic bottom drag (CDRAG = 0.003)
- Biharmonic horizontal viscosity
 — coefficient scaled based on run time parameter (biharmonic Reynolds number)

Poleward Heat Transport (Atlantic)

Potential temperature bias at z = 2.5 m

