Seasonality and Scale-dependence of Oceanic Energy Transfers with investigations into strain- and vorticity-dominated regions

Ben Storer¹, Michele Buzzicotti², Stephen Griffies³, Hussein Aluie¹ Department of Mechanical Engineering, University of Rochester, Rochester, New York

² Department of Physics, University of Rome Tor Vergata & INFN

³ NOAA Geophysical Fluid Dynamics Lab

ROCHESTER

Methods: Data and Geography • NEMO analysis/forecast, global, 1/4 degree, 1 Jan 2016 - 31 Dec 2020

Weakly coupled ocean-atmosphere Assimilation / forecast

- Only considering surface layer
- Averages over geographical regions of interest
- Land treated as zero velocity ocean

This study has been conducted using E.U. Copernicus Marine Service Information: GLOBAL_ANALYSISFORECAST_PHY_CPL_001_015

Methods: Coarse-graining

- Choose a length scale (in metres), and smooth / blur the fields. Essentially a locally weighted average in space
- time, and chosen length scale

Can extract large-scale and small-scale kinetic energy as a function of space,

Methods: Definitions

- Coarse velocities: $\overline{u}, \overline{v}$
- Large-scale KE: $cKE = KE(\overline{u}, \overline{v}) = \frac{1}{2}\rho_0 (\overline{u}, \overline{v})$

• Small-scale KE: $fKE = \overline{KE(u, v)} - \overline{KE(\overline{u}, \overline{v})}$

- Energy transfer across scales: $\Pi = \rho_0 \times$
- Okubo-Weiss: OW = $s_n^2 + s_s^2 \omega^2 = (S_{11} S_{22})^2 + (S_{12} + S_{21})^2 \omega^2$ where $S_{ij} = \frac{1}{2} \left(\overline{u}_{i,j} + \overline{u}_{j,i} \right)$

$$\overline{u^2 + \overline{v^2}})$$

$$\overline{u^2 + \overline{v^2}} - \frac{1}{2}\rho_0(\overline{u^2 + \overline{v^2}})$$

$$\frac{1}{2} \left(\overline{u}_{i,j} + \overline{u}_{j,i} \right) \quad \times \quad \left(\overline{u}_i \overline{u}_j - \overline{u}_i \overline{u}_j \right)$$

Small-scale stress Large-scale strain

Methods: Definitions

- Large-scale KE: Energy at scales <u>larger than</u> the filter scale
- Small-scale KE: Energy at scales <u>smaller than</u> the filter scale
- Energy transfer across scales (Pi): Positive indicates direct cascade, negative indicates inverse / upscale cascade
- Okubo-Weiss: Positive indicates straindominated, negative indicates vortex dominated

What do these variables (qualitatively) look like on ocean data?

Large-scale KE

- One-year averages
- Negative Pi indicates inverse / upscale energy transfer arger Filter Scale
- Negative Okubo-Weiss indicates vortex dominated (positive to strain dominated)
- Colour bars are consistent within each column

• One-year averages

- Negative Pi indicates inverse / upscale energy transfer
- Negative Okubo-Weiss indicates vortex dominated (positive to strain dominated)
- Colour bars are consistent within each column

arger Filter Scale

Large-scale KE

• One-year averages

- Negative Pi indicates inverse / upscale energy transfer
- Negative Okubo-Weiss indicates vortex dominated (positive to strain dominated)
- Colour bars are consistent within each column

arger Filter Scale

Energy Transfer (Pi)

Okubo-Weiss

Questions to investigate:

- How do KE and Pi differ between strain and vortex regions?
- What temporal structures do these diagnostics show?
- What kind of regional variations are present?

First, for reference, the time and space averaged quantities

<u>First, for reference, the time</u> and space averaged quantities

- KE and cascade peak around ~170km outside of equator and ~300km in equatorial band
- Qualitatively similar spectra between strain and vortex regions
- Energy minimum around 80km Suggestions on cause?

<u>First, for reference, the time</u> and space averaged quantities

- KE and cascade peak around ~170km outside of equator and ~300km in equatorial band
- Qualitatively similar spectra between strain and vortex regions
- Energy minimum around 80km Suggestions on cause?

Partition into Strain vs Vortex Regions

ls it a sound partition?

Strain vs Vortex Regions

- 215km filter scale
- slope ≈ 1 in area distribution Suggestions on cause / implications?
- cKE and Pilocalized in Okubo-Weiss

Strain vs Vortex Regions

- 215km filter scale
- slope ≈ 1 in area distribution Suggestions on cause / implications?
- cKE and Pilocalized in Okubo-Weiss

Strain vs Vortex Regions

- 215km filter scale
- slope ≈ 1 in area distribution Suggestions on cause / implications?
- cKE and Pilocalized in Okubo-Weiss

So not unreasonable to use Okubo-Weiss to partition space

Partition into Strain vs Vortex I Regions

What % of KE, Pi are in strain region? Scale-dependence?

Strain vs Vortex Regions Field Partitioning

- Proportion of Pi, fKE, cKE in strain (Okuko-Weiss > 0) regions as a function of scale
- Majority of cascade (Pi) occurs in straining regions, across all scales
 - Also observed in 2-D experiments and rotating turbulence
 - (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The direct enstrophy cascade of two-dimensional soap film flows. *Physics of Fluids*
 - Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). Energy transfer in turbulence under rotation. *Physical Review Fluids*

 Energy is roughly at parity between strain and vortex regions (esp. larger than 200km)

Strain vs Vortex Regions Field Partitioning

- Proportion of Pi, fKE, cKE in strain (Okuko-Weiss > 0) regions as a function of scale
- Majority of cascade (Pi) occurs in straining regions, across all scales
 - Also observed in 2-D experiments and rotating turbulence
 - (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The direct enstrophy cascade of two-dimensional soap film flows. Physics of Fluids
 - Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). Energy transfer in turbulence under rotation. *Physical* Review Fluids

 Energy is roughly at parity between strain and vortex regions (esp. larger than 200km)

Strain vs Vortex Regions Field Partitioning

- Proportion of Pi, fKE, cKE in strain (Okuko-Weiss > 0) regions as a function of scale
- Majority of cascade (Pi) occurs in straining regions, across all scales
 - Also observed in 2-D experiments and rotating turbulence
 - (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The direct enstrophy cascade of two-dimensional soap film flows. Physics of Fluids
 - Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). Energy transfer in turbulence under rotation. *Physical* **Review Fluids**

• Energy is roughly at parity between strain and vortex regions (esp. larger than 200km)

Partition into Strain vs Vortex Regions

Relative strength of Pi to fKE? ('cascade efficiency')

Any significant regional / seasonal structures?

- Filter scale = 215km
- Efficiency greater in strain regions and in Gulf Stream & Kuroshio
- Gulf Stream and Kuroshio show substantial variation
- Efficiency increases in (local) winter
 - (negative z-score indicates greater magnitude of efficiency)
 - seasonal trends from 5-year average

- Filter scale = 215km
- Efficiency greater in strain regions and in Gulf Stream & Kuroshio
- Gulf Stream and Kuroshio show substantial variation
- Efficiency increases in (local) winter
 - (negative z-score indicates greater magnitude of efficiency)
 - seasonal trends from 5-year average

- Filter scale = 215km
- Efficiency greater in strain regions and in Gulf Stream & Kuroshio
- Gulf Stream and Kuroshio show substantial variation
- Efficiency increases in (local) winter
 - (negative z-score indicates greater magnitude of efficiency)
 - seasonal trends from 5-year average

- Filter scale = 215km
- Efficiency greater in strain regions and in Gulf Stream & Kuroshio
- Gulf Stream and Kuroshio show substantial variation
- Efficiency increases in (local) winter
 - (negative z-score indicates greater magnitude of efficiency)
 - seasonal trends from 5-year average

Comparing temporal signal between different length scales

z-score ~ normalized deviation from the mean

- Measure correlation as a function of lag-time between large-scale KE and energy cascade
- Outside of equator, large-scale KE lags behind cascade by ~30 days at scales smaller than ~250km
- Lag most prominent outside of dominant currents

Concusions

- Kinetic energy is roughly equally distributed between strain and vortex regions, with small scales tending towards vortex dominance
- fKE) than other regions
 - Cascade efficiency tends to strengthen in (local) winter

• Majority ($\approx 70\%$) of net energy transfer occurs in strain-dominated regions

Kuroshio and Gulf Stream have substantially stronger cascade efficiency (Pi /

Outside of dominant currents, energy at scales larger than ~250 km lags behind the corresponding small scales and upscale cascade by ~30 days

plications?Log-log slope of ~1 when comparing area to Okubo-Weiss?

Extra slices

One-year averages

- Negative Pi indicates inverse / upscale energy transfer
- Negative Okubo-Weiss indicates vortex dominated (positive to strain dominated)
- Colour bars are consistent within each column

