|

Seasonality and Scale-dependence
o

of Oceanic Energy Transfers

with investigations into strain- and vorticity-dominated regions

1 2 3 1 ‘_1
Ben Storer’, Michele Buzzicotti®, Stephen Griffies’, Hussein Aluie
gl Engres Uty f Rt s e o \~Z

3 NOAA Geophysical Fluid Dynamics Lab UNIVERSITY of

OCHESTER




Methods: Data and Geography

® NEMO analysis/tforecast, global, 1/4 degree, 1 Jan 2016 - 31 Dec 2020
This study has been conducted using E.U. Copernicus Marine Service Information: GLOBAL_ANALYSISFORECAST_PHY_CPL_001_015

Weakly coupled ocean-atmosphere
Assimilation / forecast

® Only considering surface layer

® Averages over geographical
regions of interest

® | and treated as zero
velocity ocean



Methods: Coarse-graining

® Choose a length scale (in metres), and smooth / blur the tields.
Essentially a locally weighted average in space

® Can extract large-scale and small-scale kinetic energy as a function of space,
time, and chosen length scale
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Methods: Definitions

e Coarse velocities: i1,V

1
o Large-scale KE: cCKE = KE(T, V) = 5'00 (b—,Z 4 VZ)

|
o Small-scale KE: {KE = KE(u, v) — KE(ir, V) = 5,00
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Methods: Definitions

® Large-scale KE: Energy at scales |larger than
the filter scale

¢ Small-scale KE: Energy at scales smaller than
the filter scale

® Energy transfer across scales (Pi): Positive
indicates direct cascade, indicates
inverse /

® Okubo-Weiss: Positive indicates strain-
dominated, indicates
dominated
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What do these variables
(qualitatively) look like
on ocean data?



Large-scale

Energy Transfer (Pi)
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® One-year averages

100 km

o Pi indicates
inverse / upscale
energy transfer

( positive to strain
dominated )
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® Colour bars are
consistent within
each column

464 km




® One-year averages

Pi indicates

inverse / upscale
energy transfer

Okubo-

Weiss indicates
dominated

( positive to strain

dominated )

Colour bars are
consistent within
each column

Larger Filter Scale

100 km

215 km

278 km

464 km
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Large-scale KE Energy Transfer (Pi) Okubo-Weiss
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® One-year averages

100 km

o Pi indicates
inverse / upscale
energy transfer

Questions to investigate:

diagnostics show?
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First, tor reterence,
the time and space
averaged gquantities



Sadek, M., & Aluie, H.(2018). Extracting the spectrum of a flow by spatial filtering. Physical Review Fluids

L=200km

First, for reterence, the time

Ak -Fine KI '
and space averaged quantities (=0T g
o5 %--r-f-rﬂ-rr----_-_?.
® KE and cascade peak around N

~170km outside of equator and
~300km in equatorial bana

Equator

® Qualitatively similar spectra

between strain and vortex
regions

South of Equator

® Energy minimum around 80km

Suggestions on cause?




Sadek, M., & Aluie, H.(2018). Extracting the spectrum of a flow by spatial filtering. Physical Review Fluids

First, for reterence, the time

A -Fine K]

and space averaged guantities
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® KE and cascade peak arouna

~170km outside of equator and
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® Energy minimum around 80km

Suggestions on cause?




Partition Into
Strain vs Vortex
Regions

s it a sound
partition?



Strain vs Vortex Regions

---- North (vortex)
i — North (strain)
i ---- Equator (vortex)
: = —— Equator (strain)
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Strain vs Vortex Regions

---- North (vortex)
— North (strain)
---- Equator (vortex)
—— Equator (strain)
---- South (vortex)
—— South (strain)
-=== Slope = +1

® 215km filter scale

% of Region Area

® slope =~ 1 in area distribution
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Strain vs Vortex Regions

---- North (vortex)
< — North (strain)
i ---- Equator (vortex)
: = —— Equator (strain)
® 215km filter scale = o~ South (vortex
23\2 \| —— South (strain)
® slope ~ 1 in area distribution W O
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Partition Into
Strain vs Vortex
Regions

What % ot KE, Pi are
in strain region’

Scale-dependence?



Strain vs Vortex Regions
Field Partitioning

® Proportion of Pi, fKE, cKE in strain

(Okuko—Weiss > O) regions as a function of
scale

® Majority of cascade (Pi) occurs in straining
regions, across all scales

® Also observed in 2-D experiments and rotating turbulence

® (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The
direct enstrophy cascade of two-dimensional soap film
flows. Physics of Fluids

® Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018).
Energy transfer in turbulence under rotation. Physical
Review Fluids

® Energy is roughly at parity between strain
and vortex regions (esp. larger than 200km)
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Strain vs Vortex Regions
Field Partitioning

® Proportion of Pi, fKE, cKE in strain

(Okuko—Weiss > O) regions as a function of
scale

® Majority of cascade (Pi) occurs in straining
regions, across all scales

® Also observed in 2-D experiments and rotating turbulence

® (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The
direct enstrophy cascade of two-dimensional soap film
flows. Physics of Fluids

® Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018).
Energy transfer in turbulence under rotation. Physical
Review Fluids

® Energy is roughly at parity between strain
and vortex regions (esp. larger than 200km)
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Strain vs Vortex Regions
Field Partitioning

® Proportion of Pi, fKE, cKE in strain

(Okuko—Weiss > ()) regions as a function of
scale

® Majority of cascade (Pi) occurs in straining
regions, across all scales

® Also observed in 2-D experiments and rotating turbulence

® (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The
direct enstrophy cascade of two-dimensional soap film
flows. Physics of Fluids

® Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018).
Energy transfer in turbulence under rotation. Physical
Review Fluids

® Energy is roughly at parity between strain

and vortex regions (esp. larger than )

S .
~ 0
--1-------I'------'I-------

Proportion of
Net Pi

=
>

i .
N
T T EEEEE] ------:-----

in Strain Regions

-
Ot

0.7

Proportion of
Large-scale KE
in Strain Regions

North of Equator

e e e o T
—
T —— e e
T -

e

gab il

e : i
e e T e e e e
| . 1
| . M| .
P | . | .
| . | .
PR | . P | .
0 : : D : Y :
%5 Bﬂ Eg . M —— — - éé : é é él é
Sy P ; P :
Z ol | é N\, | é
e (] R s b N N
=  : \ | =
% g CS SR : N |
&5 2 : SR : D ¥ NS 5
= TN 4 : el e et . b T i e et et ettt i ekl i e i - __'i__'
R 0.40 Full Area N \ N\
R R \
: Currents ii : \
035 B . e e R e e e e Rt bbbl bl
Remainder [ { i :iid
T - - : D N R
1073 102 1073 1072

K (1/km]

K (1/km}



Relative strength of Pi to
fKE?
(‘cascade efficiency’)

Partition Into
Strain vs Vortex

Regigns Any significant regional /

seasonal structures?



straining regions vorticity regions

Strain vs Vortex Regions

Cascade Efficiency
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® [ilter scale = 215km
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ACC

Gulf Stream
Gulf Stream
Equat

® Efficiency greater in strain regions
and in Gulf Stream & Kuroshio

| North of Equator
South of Equator

® Gulf Stream and Kuroshio show
substantial variation

—_

® Efficiency increases in (local)

winter

® ( negative z-score indicates greater
magnitude of efficiency )

® seasonal trends from 5-year average

0

|
—

(NN N

z-score of Pi / Fine-scale KE




straining regions vorticity regions

Strain vs Vortex Regions

Cascade Efficiency

Pi / Fine-scale KE (years™!)

® [ilter scale = 215km
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® Efficiency greater in strain regions
and in Gult Stream & Kuroshio

| North of Equator
South of Equator

® Gulf Stream and Kuroshio show
substantial variation

—_

® Efficiency increases in (local)

winter

® ( negative z-score indicates greater
magnitude of efficiency )

® seasonal trends from 5-year average
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straining regions vorticity regions

Strain vs Vortex Regions

Cascade Efficiency

® [ilter scale = 215km

Pi / Fine-scale KE (years™!)

Gulf Strea@
Equator
Kuroshio
ACC

® Efficiency greater in strain regions
and in Gulf Stream & Kuroshio

| North of Equator
South of Equator

® Gulf Stream and Kuroshio show
substantial variation

—_

® Efficiency increases in (local)

winter

® ( negative z-score indicates greater
magnitude of efficiency )

® seasonal trends from 5-year average

0

|
—

(NN N

z-score of Pi / Fine-scale KE




straining regions vorticity regions

Strain vs Vortex Regions

Cascade Efficiency
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® [ilter scale = 215km

Equator
Kuroshio
ACC

Gulf Stream
Gulf Stream
Equat

® Efficiency greater in strain regions
and in Gulf Stream & Kuroshio

M North of Equator
South of Equator

Weaker

® Gulf Stream and Kuroshio show
substantial variation

Stronger

® Efficiency increases in (local)

winter

® ( negative z-score indicates greater
magnitude of efficiency )

® seasonal trends from 5-year average
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Comparing temporal signal
between different length scales



z-score ~ normalized deviation from the mean 9oF

Outside of currents (North)
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2I"TOutside of currents (North)
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® Measure correlation as a
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Conclusions

o Majority ( ~ 70 % ) of net energy transter occurs in strain-dominated regions

e Kinetic energy is roughly equally distributed between strain and vortex
regions, with small scales tending towards vortex dominance

® Kuroshio and Gulf Stream have substantially stronger cascade efficiency ( Pi /
fKE ) than other regions

® Cascade efficiency tends to strengthen in (local) winter

® Qutside of dominant currents, energy at scales larger than ~250 km lags
behind the corresponding small scales and upscale cascade by ~30 days



Questions: Causes? Implications?

® | og-log slope of ~1 when
comparing area to Okubo-Weiss?

® Energy minimum around 80km?

North of Equator

South of Equator

% of Region Area

---- North (vortex)
—— North (strain)

---- Equator (vortex)

— Equator (strain)

OktDo-Weiss (day 2)

---- South (vortex)
—— South (strain)




Extra slides



Energy Transfer (Pi) Okubo-Weiss

® One-year averages

100 km

o Pi indicates
inverse / upscale
energy transfer
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