
Ben Storer , Michele Buzzicotti , Stephen Griffies , Hussein Aluie  
 Department of Mechanical Engineering, University of Rochester, Rochester, New York 
 Department of Physics, University of Rome Tor Vergata & INFN 
 NOAA Geophysical Fluid Dynamics Lab

1 2 3 1

1

2

3

Seasonality and Scale-dependence 
of Oceanic Energy Transfers
with investigations into strain- and vorticity-dominated regions



Methods: Data and Geography
• NEMO analysis/forecast, global, 1/4 degree, 1 Jan 2016 - 31 Dec 2020 

This study has been conducted using E.U. Copernicus Marine Service Information: GLOBAL_ANALYSISFORECAST_PHY_CPL_001_015  
Weakly coupled ocean-atmosphere 
Assimilation / forecast 

• Only considering surface layer 

• Averages over geographical 
regions of interest 

• Land treated as zero 
velocity ocean



Methods: Coarse-graining
• Choose a length scale (in metres), and smooth / blur the fields.  

Essentially a locally weighted average in space 

• Can extract large-scale and small-scale kinetic energy as a function of space, 
time, and chosen length scale
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Methods: Definitions
• Coarse velocities:  

• Large-scale KE:   

• Small-scale KE:  

•
Energy transfer across scales:  

• Okubo-Weiss:  where 

u, v

cKE = KE(u, v) =
1
2

ρ0 (u2 + v2)

fKE = KE(u, v) − KE(u, v) =
1
2

ρ0(u2 + v2) −
1
2

ρ0 (u2 + v2)

Π = ρ0 ×
1
2 (ui,j + uj,i)

Large-scale strain

× (uiuj − uiuj)
Small-scale stress

OW = s2
n + s2

s − ω2 = (S11 − S22)2 + (S12 + S21)2 − ω2

Sij =
1
2 (ui,j + uj,i)

L

ℓ Smaller than filter 

Π

Larger than filter 



Methods: Definitions
• Large-scale KE: Energy at scales larger than 

the filter scale 

• Small-scale KE: Energy at scales smaller than 
the filter scale 

• Energy transfer across scales (Pi): Positive 
indicates direct cascade, negative indicates 
inverse / upscale cascade 

• Okubo-Weiss: Positive indicates strain-
dominated, negative indicates vortex 
dominated
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What do these variables 
(qualitatively) look like 
on ocean data?
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• One-year averages 

• Negative Pi indicates 
inverse / upscale 
energy transfer 

• Negative Okubo-
Weiss indicates 
vortex dominated 
( positive to strain 
dominated ) 

• Colour bars are 
consistent within 
each column



Smoothing of KE 
scales, decrease in 
large-scale energy 

(log scale)

Predominant inverse 
cascade at 100km.  
More balanced at 

464km.

Significant strain 
and vortex area at 

all scales
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• One-year averages 

• Negative Pi indicates 
inverse / upscale 
energy transfer 

• Negative Okubo-
Weiss indicates 
vortex dominated 
( positive to strain 
dominated ) 

• Colour bars are 
consistent within 
each column

Questions to investigate: 

• How do KE and Pi differ between strain and 
vortex regions? 

• What temporal structures do these 
diagnostics show? 

• What kind of regional variations are present?



First, for reference, 
the time and space 
averaged quantities



• KE and cascade peak around 
~170km outside of equator and 
~300km in equatorial band 

• Qualitatively similar spectra 
between strain and vortex 
regions 

• Energy minimum around 80km 
Suggestions on cause?

Sadek, M., & Aluie, H. (2018). Extracting the spectrum of a flow by spatial filtering. Physical Review Fluids
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First, for reference, the time 
and space averaged quantities



Sadek, M., & Aluie, H. (2018). Extracting the spectrum of a flow by spatial filtering. Physical Review Fluids
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First, for reference, the time 
and space averaged quantities

• KE and cascade peak around 
~170km outside of equator and 
~300km in equatorial band 

• Qualitatively similar spectra 
between strain and vortex 
regions 

• Energy minimum around 80km 
Suggestions on cause?



Partition into  
Strain vs Vortex 
Regions

Is it a sound 
partition?



Strain vs Vortex Regions

• 215km filter scale 

• slope  in area distribution 
Suggestions on cause / implications? 

• cKE and Pi localized in 
Okubo-Weiss

≈ 1
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Strain vs Vortex Regions

• 215km filter scale 

• slope  in area distribution 
Suggestions on cause / implications? 
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Strain vs Vortex Regions

• 215km filter scale 

• slope  in area distribution 
Suggestions on cause / implications? 

• cKE and Pi localized in 
Okubo-Weiss

≈ 1
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use Okubo-Weiss to 

partition space



Partition into  
Strain vs Vortex 
Regions

What % of KE, Pi are 
in strain region? 
Scale-dependence?



Strain vs Vortex Regions
Field Partitioning

• Proportion of Pi, fKE, cKE in strain 
 regions as a function of 

scale 

• Majority of cascade (Pi) occurs in straining 
regions, across all scales 

• Also observed in 2-D experiments and rotating turbulence 
• (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The 

direct enstrophy cascade of two-dimensional soap film 
flows. Physics of Fluids 

• Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). 
Energy transfer in turbulence under rotation. Physical 
Review Fluids 

• Energy is roughly at parity between strain 
and vortex regions (esp. larger than 200km)

(Okuko-Weiss > 0)
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Strain vs Vortex Regions
Field Partitioning

• Proportion of Pi, fKE, cKE in strain 
 regions as a function of 

scale 

• Majority of cascade (Pi) occurs in straining 
regions, across all scales 

• Also observed in 2-D experiments and rotating turbulence 
• (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The 

direct enstrophy cascade of two-dimensional soap film 
flows. Physics of Fluids 

• Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). 
Energy transfer in turbulence under rotation. Physical 
Review Fluids 

• Energy is roughly at parity between strain 
and vortex regions (esp. larger than 200km)
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Strain vs Vortex Regions
Field Partitioning

• Proportion of Pi, fKE, cKE in strain 
 regions as a function of 

scale 

• Majority of cascade (Pi) occurs in straining 
regions, across all scales 

• Also observed in 2-D experiments and rotating turbulence 
• (enstrophy) Rivera, M. K., Aluie, H., & Ecke, R. E. (2014). The 

direct enstrophy cascade of two-dimensional soap film 
flows. Physics of Fluids 

• Buzzicotti, M., Aluie, H., Biferale, L., & Linkmann, M. (2018). 
Energy transfer in turbulence under rotation. Physical 
Review Fluids 

• Energy is roughly at parity between strain 
and vortex regions (esp. larger than 200km)
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Partition into  
Strain vs Vortex 
Regions

Relative strength of Pi to 
fKE?  
    ('cascade efficiency') 
Any significant regional / 
seasonal structures?
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Strain vs Vortex Regions
Cascade Efficiency

• Filter scale = 215km 

• Efficiency greater in strain regions 
and in Gulf Stream & Kuroshio 

• Gulf Stream and Kuroshio show 
substantial variation 

• Efficiency increases in (local) 
winter 
• ( negative z-score indicates greater 

magnitude of efficiency ) 
• seasonal trends from 5-year average
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Strain vs Vortex Regions
Cascade Efficiency

• Filter scale = 215km 

• Efficiency greater in strain regions 
and in Gulf Stream & Kuroshio 

• Gulf Stream and Kuroshio show 
substantial variation 

• Efficiency increases in (local) 
winter 
• ( negative z-score indicates greater 

magnitude of efficiency ) 
• seasonal trends from 5-year average
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Strain vs Vortex Regions
Cascade Efficiency

• Filter scale = 215km 

• Efficiency greater in strain regions 
and in Gulf Stream & Kuroshio 

• Gulf Stream and Kuroshio show 
substantial variation 

• Efficiency increases in (local) 
winter 
• ( negative z-score indicates greater 

magnitude of efficiency ) 
• seasonal trends from 5-year average
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Strain vs Vortex Regions
Cascade Efficiency

• Filter scale = 215km 

• Efficiency greater in strain regions 
and in Gulf Stream & Kuroshio 

• Gulf Stream and Kuroshio show 
substantial variation 

• Efficiency increases in (local) 
winter 
• ( negative z-score indicates greater 

magnitude of efficiency ) 
• seasonal trends from 5-year average
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Comparing temporal signal 
between different length scales



• NEMO (right) 

• AVISO (bottom)
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• Measure correlation as a 
function of lag-time between 
large-scale KE and energy 
cascade 

• Outside of equator, large-scale KE 
lags behind cascade by ~30 days 
at scales smaller than ~250km 

• Lag most prominent outside of 
dominant currents
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Conclusions
• Majority  of net energy transfer occurs in strain-dominated regions 

• Kinetic energy is roughly equally distributed between strain and vortex 
regions, with small scales tending towards vortex dominance 

• Kuroshio and Gulf Stream have substantially stronger cascade efficiency ( Pi / 
fKE ) than other regions 

• Cascade efficiency tends to strengthen in (local) winter 

• Outside of dominant currents, energy at scales larger than ~250 km lags 
behind the corresponding small scales and upscale cascade by ~30 days

( ≈ 70 % )



Questions: Causes? Implications?
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• Energy minimum around 80km? • Log-log slope of ~1 when 
comparing area to Okubo-Weiss?
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Extra slides



• One-year averages 

• Negative Pi indicates 
inverse / upscale 
energy transfer 

• Negative Okubo-
Weiss indicates 
vortex dominated 
( positive to strain 
dominated ) 

• Colour bars are 
consistent within 
each column
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Strain vs Vortex Regions: Area Partitioning
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