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A Diagnostic Tool for Spatiotemporal

Water Mass Transformation Analysis

OUTLINE

l.  Primer on WMT (theory and underlying calculations)
Il.  Workflow

lll. Examples
a. Global Picture

b. North Atlantic
c. Southern Ocean



Primer on Water Mass Transformation

- Quantifying the rate at which water is transformed between water mass classes

Has been applied in both observational and modelling studies over ~40 years. Recently
generalized in Groeskamp et al. (2019)

» Classes are defined by a scalar (A) which can represent
* atracer (e.g, 0, S, carbon)
* or buoyancy/density (e.g., 00, Yn)

* Transformation (G) is the transport of water across a A-isosurface
= Nonzero material change in A

. D
1= N )
Dt ot

By convention, G(A) > O means water moves to larger A



Calculating water mass transformation G(A)

» Traditionally, WMT in density space (A = Y): Transport across neutral
density surfaces

o e P - (1,8)
oAt

Courtesy of Graeme MacGilchrist



Calculating water mass transformation G(A)

[ NON XY EN O G 0 = @ mom6-analysiscookbook.readthedocs.io/en/latest/notebooks/Watermas ¢ (4] th ()] o

# MOMé6-AnalysisCookbook ‘ ,
Docs » Advanced diagnostics » Watermass transformation in MOMé ) Edit on GitHub

Watermass transformation in MOM6

Technical topics Contributors: Graeme MacGilchrist

Basic operations .
Mass transport (G) across a contour of a materially-conserved tracer (4) can be derived from the integrated diffusive tendencies of that tracer (A).

Grid Calculus Y -
Formally, this is written
Plotting
R ' d .
STEPPIE G(4) = — /// pAdv .
Budgets 04 A'<a
| B Advanced diagnostics This calculation, initially laid out by Walin (1982) and recently generalized in Groeskamp et al. (2019), is broadly known as watermass transformation ‘
| Eirer e and it can be used to reframe the ocean circulation in a new coordinate system. ‘
MOM6 |
Discrete formulation of Here, we show how to carry out this calculation in MOM&é in a variety of contexts. ‘
watermass transformation for :
MOMé6 - - -
. , Discrete formulation of watermass transformation for MOM®6
I Transformation across
temperature contours
For evaluation in an ocean model, we can write out a discrete version of the above equation (see Section 7.5 in Groeskamp et al., 2019):
Transformation across g,
contours l
Closing the mass budget within G(4) = — Z Z I1(4,, 4, AA)(PA):‘.}.L- Viik s
layers AX STk

where A A is the discrete bin width for defining A contours, V is the grid-cell volume, and we have introduced a boxcar function to accumulate grid cells

Bi n n i n g in which A4 falls within the discrete bin:
contributions to

° Now, in the case of heat and salt in MOMS&, it is the vertically-extensive tracer content that is conserved (see budget closure tutorial) and we can

A into N classes | e

1 if 4, € [A— A2, A+ AA2)

I1(4,, 4, Ad) = { )
0 otherwise

1 -
G(A) ~ == 3 ¥ w4 ADPA) kA »

n ijk

where A = f_i‘“' A dz is the diffusive tendency of the vertically-integrated tracer content, and A is the horizontal grid area.
& Read the Docs ok

"Watermass transformation in MOMG6" Iutorial by Graeme MacGilchrist

https://mom6—analysiscookbook.readthedocs.io # MOMé6-AnalysisCookbook


https://mom6-analysiscookbook.readthedocs.io

Calculating 1: Sum of tendencies / flux convergences

* Focusing on the process method.

« _  Interior (mixing) Surface boundary Full 3D

Total /= = processes//-l-« forcing WMT
Material — Sum of tendencies Surface
change WMT

- |deally, we want both tendencies from interior and boundary
» Requires full 3d diagnostic output

* Practically, we can use 2d surface fluxes to do surface WMT

Pl e cd5e ol density, we need suklace litxes o

- heat hfds
- freshwater | wfo
- salt sfdsi

CMOR



Spatial distribution of WMT

* The integrated transformation for a particular value of A (1,) can be
written as a surface integral:

G 1) = F(t,x,y)dA
A

» Here, F Is a spatiotemporal field of transformation at the given
Eostiiidee or 4 = /.

» This allows to retain spatial information of WM, illustrating where
(and when) transformation occurs in the ocean.

* A number of studies have used this method with both observation-
based data and model output (e.g, Brambilla et al., 2003; Maze et al.,
200 Moorman et al., 2020)




Workflow
xarray open_dataset / OA.

Datasets jupyter

open_mfdataset /
open_zarr
om4labs read Read flux/tendencies & grid info v

intake-esm open_esm_datastore /‘

' ” xarray

CMOR naming Hesvigele=gf-ll —=—»— standard naming

/ \ l for coords and dims

stirface fluxes or 3d tendencies

SWMT 3dWMT WMT paCkage classes
xhistogram
integrated foV \ spatial map
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F(p) (10° m3s™)

Mean transformation [Sv]

Global Picture (Surface WMT)
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Global Picture (Full 3d WMT)
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« Same general distribution in density space between CM4 and observations

« However, magnitudes and relative position of the classes are different

 Currently, 3d boundary and interiors tendencies only at annual time scale

* Surface Is missing SW penetration which is important (Groeskamp and ludicone, 201 8)

 3d boundary tendency includes SWV penetration



North Atlantic (WMT across O classes)
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e T 0 temperatUre space In the North Atlantic: Consistent pictlire
between observational-based method and model output

» CM4 pre-industrial shifted towards colder temperature relative to the
observations

» 8" water formation = |6 water formation in the pre-industrial run



North Atlantic (WMT across O classes)

& = [dioc dilierences between the diflerent mogdel outputs

» Annual vs. monthly output (surface WMT)

» Full 3d boundary forcing versus surface

» Compared to these differences, adding interior processes Is only
secondary
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North Atlantic (WMT across O classes)
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North Atlantic (Formation map)
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Southern Ocean (Surface WMT)
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CMIP6 surface WMT analysis

&1 Uace ML we only need sea surfdace (21)] thacep
concentration and flux fields.

* Looking at Pangeo CMIP6 archive, we have

- Sea surface temperature (tos)
» 5| out of 52 (historical, piControl) PANG=O0

- Sea surface salinity (sos)
y / ouk ol o) (historical) / 48 out of 52 (piControl)

\4

- Downward heat flux (hfds)

» 29 out of 52 (historical) / 30 out of 52 (piControl) I NTAKE
- Water flux into sea water (wfo) +
» 22 out of 52 (historical, piControl) intake-esm

+

m» |8 out of 52 with a complete set of those variables : :
cmip6-preprocessing

- Downward sea ice basal salt flux (sfdsi)
» currently missing in all cases



Conclusions

* Diagnostic tool that introduces the WMT framework as an additional
utility to assess ocean and climate models

 Capabllity of assessing spatiotemporal variability in WMT

* Inter-model comparison and assessing configurations (e.g., spatial
resolution, parameterizations, coupled vs. forced)

» Still "work in progress” and development ahead:
» Decompose contributions into specific processes
» Incorporating analysis with inert tracers (e.g., CFCs and SF6)
» Expand the application to more models
* Start with a selection of MOM6 simulations
* Apply it to all CMIP models
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