Towards a potential-vorticity based mesoscale closure scheme

T. Uchida, Q. Jamet, W. Dewar, D. Balwada, J. Le Sommer & T. Penduff.

CESM Ocean Model Working Group Meeting, Feb. 3, 2021

Potential temperature [°C] 0 25 1000 2000 Depth [m] 3000 10 **4000** 5 5000 Vieu A16 Jul/Aug 1988 (N) Feb-Apr 1989 (S) Data: M. McCartney, WHOI; L. Talley and J. Swift, SIO 6000 EQ 40°S 20°S 20°N 40°N 60°N

Salinity [pss-78]

The stratified ocean

- ²⁰ The ocean
- interior is
 stratified and
 - quasi-
 - adiabatic, so
 - much so that we infer the
- ³⁷ global ocean
- ^{36.5} circulation
- ³⁶ from tracer
- ^{35.5} distribution
- along

34

^{34.5} isopycnals.

Figures taken from the World Ocean Circulation Experiment (WOCE)

Figures taken from the World Ocean Circulation Experiment (WOCE)

- The Gent-McWilliams (GM) skew diffusivity diffuses the isopycnal thickness in a similar manner to how baroclinic instability would if resolved.
- The Redi diffusivity represents the enhanced tracer stirring along isopycnals due to eddies.
 - GM and Redi should be related to one another.
 - Can we capture the full eddy feedback and not just the release of available potential energy?

The eddy momentum feedback

Aluie et al. (2018)

200

 $(W \text{ km}^{-2} \text{ m}^{-1})$

- Employing a coarsegraining method, Aluie et al. (2018) examined the direction of kinetic energy cascade from a 0.1° model simulation.
 - Blue shadings indicate the eddies fluxing kinetic energy back into the mean flow.

Mesoscale eddies energize the Gulf Stream. Can we say more on how and where? A very brief overview of the TWA framework

$$\hat{u}_{\tilde{t}} + \hat{u}\hat{u}_{\tilde{x}} + \hat{v}\hat{u}_{\tilde{y}} + \hat{\varpi}\hat{u}_{\tilde{b}} - f\hat{v} + \overline{m}_{\tilde{x}} = -\overline{\mathbf{e}}_{1} \cdot (\tilde{\nabla} \cdot \mathbf{E}) + \hat{\mathcal{X}}$$
$$\hat{v}_{\tilde{t}} + \hat{u}\hat{v}_{\tilde{x}} + \hat{v}\hat{v}_{\tilde{y}} + \hat{\varpi}\hat{v}_{\tilde{b}} + f\hat{u} + \overline{m}_{\tilde{y}} = -\overline{\mathbf{e}}_{2} \cdot (\tilde{\nabla} \cdot \mathbf{E}) + \hat{\mathcal{Y}}$$

•
$$\hat{\mathbf{u}} \left(= \frac{\overline{\sigma \mathbf{u}}}{\overline{\sigma}} \right)$$
 : the thickness-weighted averaged (TWA) velocity.

- $\overline{(\cdot)}$ is the <u>ensemble</u> mean.
- $\sigma \ (= \zeta_{\tilde{b}})$: the isopycnal thickness.
- ϖ : the diapycnal velocity.
- $m \ (= \phi b\zeta)$: the Montgomery potential.

Young (2012); Ringler et al. (2017)

A 24-member ensemble simulation

• No. of ensemble members: 24.

Thin lines: each ensemble member Thick lines: ensemble mean

- **Resolution**: 1/12°; **Duration**: 50 years (1963-2012).
- Model: MITgcm; Basin: North Atlantic.
- Surface boundary condition: partially air-sea coupled.
- Lateral boundary condition: relaxation and radiation conditions.

0.05

0.04

- 0.02 Ĕ

- 0.01

0.00

- Focus on an isopycnal whose ensemble-mean depth $(\overline{\zeta})$ is below the ensemble-mean mixed-layer depth (MLD).
- The isopycnal shoals drastically across the separated Gulf Stream.

The eddy feedback onto the mean flow

$$\hat{u}_{\tilde{t}} + \hat{u}\hat{u}_{\tilde{x}} + \hat{v}\hat{u}_{\tilde{y}} + \hat{\varpi}\hat{u}_{\tilde{b}} - f\hat{v} + \overline{m}_{\tilde{x}} = -\overline{\mathbf{e}}_{1} \cdot (\tilde{\nabla} \cdot \mathbf{E}) + \hat{\mathcal{X}}$$
$$\hat{v}_{\tilde{t}} + \hat{u}\hat{v}_{\tilde{x}} + \hat{v}\hat{v}_{\tilde{y}} + \hat{\varpi}\hat{v}_{\tilde{b}} + f\hat{u} + \overline{m}_{\tilde{y}} = -\overline{\mathbf{e}}_{2} \cdot (\tilde{\nabla} \cdot \mathbf{E}) + \hat{\mathcal{Y}}$$

- The net eddy feedback onto the (TWA) mean fields are encapsulated in the Eliassen-Palm flux (E) divergence.
- For an eddy closure, it shifts the focus from the buoyancy equation (GM) to the momentum equations.

If we can parametrize $\overline{e} \cdot (\nabla \cdot E)$, we have a physically consistent eddy closure scheme which represents the eddy buoyancy & momentum fluxes.

- The Eliassen-Palm flux divergence is directly related to the eddy Ertel potential vorticity (PV) flux (\mathbf{F}^{Π}).
- This primes us to connect the Eliassen-Palm flux divergence to the large-scale Ertel PV.
- We relate the eddy Ertel PV flux to the local-gradient flux of the mean Ertel PV ($\Pi^{\#}$) via an anisotropic eddy diffusivity tensor (**K**).

Can we parametrize the Eliassen-Palm flux divergence?

- The Eliassen-Palm flux divergence, which is directly related to the eddy PV flux, encapsulates the net eddy feedback onto the mean flow.
- The eddy PV flux can be related to the TWA field as an active tracer.
- The 2 × 2 diffusivity tensor K, which provides a closure for the eddy PV flux, single-handedly includes the information of eddy momentum fluxes in addition to bringing the GM and Redi diffusivities together.
- For a prognostic closure scheme, we would need to inform the " κ "s via the (resolved?) TWA field.

(Extra slide) Defining the buoyancy coordinate for a realistic EOS

With a realistic equation of state (EOS) the vertical coordinate cannot "naively" be defined by potential density (ρ_{θ}) as the pressure anomaly $(\phi = \int -g\rho_0^{-1}(\rho_{\theta} - \rho_0)d\zeta)$ does not

translate to a body force in buoyancy coordinates, i.e.

 $\nabla_{h}\phi \neq \tilde{\nabla}_{h}m$. We, therefore, argue for the use of in-situ density anomaly δ (= $\rho - \rho(\zeta)$) where ρ is the in-situ density and ρ is \sim

a function of only depth. The buoyancy coordinate can then be defined as $\tilde{b} = -g\rho_0^{-1}\delta$ which removes a large portion of compressibility; the iso-surfaces of \tilde{b} become close to neutral surfaces. The formulation of \tilde{b} is analogous to where the buoyancy reduces to $\tilde{b} = -g\rho_0^{-1}(\rho - \rho_0)$ for a linear EOS.

(Extra slide) The Eliassen-Palm flux

$$\hat{u}_{\tilde{t}} + \hat{u}\hat{u}_{\tilde{x}} + \hat{v}\hat{u}_{\tilde{y}} + \hat{\varpi}\hat{u}_{\tilde{b}} - f\hat{v} + \overline{m}_{\tilde{x}} = -\overline{\mathbf{e}}_1 \cdot (\tilde{\nabla} \cdot \mathbf{E}) + \hat{\mathcal{X}}$$

$$\hat{v}_{\tilde{t}} + \hat{u}\hat{v}_{\tilde{x}} + \hat{v}\hat{v}_{\tilde{y}} + \hat{\varpi}\hat{v}_{\tilde{b}} + f\hat{u} + \overline{m}_{\tilde{y}} = -\overline{\mathbf{e}}_2 \cdot (\tilde{\nabla}\cdot\mathbf{E}) + \hat{\mathcal{Y}}$$

- \mathbf{u}'' (= $\mathbf{u} \hat{\mathbf{u}}$) : the eddy velocity.
- $(\cdot)' (= (\cdot) \overline{(\cdot)})$: the residual from the ensemble mean.

(Extra slide) E-P flux divergence on Jan. 3, 2008

- 1.5

1.0

0.0

-0.5

-1.0

-1.5

(×10⁻⁶) [m s⁻²]

- Each column is laid out so that the sum of the first three rows sum up to the E-P flux divergence shown in the bottom row.
- The terms associated with eddy momentum flux and baroclinic instability tend to cancel each other out.

(Extra slide) Diffusivity tensor

(Extra slide) Temperature parametrization

(Extra slide) Salinity parametrization

(Extra slide) Correlation and error of parametrization

