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Towards a potential-vorticity 
based mesoscale closure 

scheme



The stratified ocean

The ocean 
interior is 
stratified and 
quasi-
adiabatic, so 
much so that 
we infer the 
global ocean 
circulation 
from tracer 
distribution 
along 
isopycnals.

Figures taken from the World Ocean Circulation Experiment (WOCE)
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The stratified ocean

Figures taken from the World Ocean Circulation Experiment (WOCE)
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It is essential to get the isopycnal placement 
correctly in global ocean simulations for 
estimating global heat and tracer transport. 

The thickness-weighted averaged (TWA) 
framework provides us with a path forward.



The Gent-McWilliams and Redi diffusivity

adiabatic loss of 
potential energy

• The Gent-McWilliams (GM) skew diffusivity diffuses the 
isopycnal thickness in a similar manner to how baroclinic 
instability would if resolved.


• The Redi diffusivity represents the enhanced tracer 
stirring along isopycnals due to eddies.

isopycnals

• GM and Redi should be related to one another. 

• Can we capture the full eddy feedback and not 
just the release of available potential energy?



Aluie et al. (2018)

• Employing a coarse-
graining method, Aluie et 
al. (2018) examined the 
direction of kinetic 
energy cascade from a 

 model simulation.


• Blue shadings indicate 
the eddies fluxing kinetic 
energy back into the 
mean flow.
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averaging box and the nature of the flow within the box.
For example, we find that in regions where a relatively
strong coherent mean flow exists, such as in the Equa-
torial Countercurrent at 100-m depth or near Florida,

the temporal variation is smaller than in regions that
lack a strong coherent mean flow, such as at the equa-
torial surface, Sargasso Sea, and the small Grand
Banks region where the instantaneous sweeping by
the Gulf Stream Extension is strong but is not tempo-
rally coherent.
A general conclusion we can deduce from Figs. 8–10 is

that an upscale energy transfer does not take place ev-
erywhere in the ocean, even at the higher latitudes. On
the other hand, if we average over large enough regions
(of order 103 km in size or larger) in the ocean, away
from the equator, we find from Figs. 4–7 that the

FIG. 8. Geographic maps of the interscale energy transfer P‘(x)
(Wkm22m21) at the surface, time averaged over 3 years (110 snap-
shots), where (top) ‘ 5 400km and (bottom) ‘ 5 200km. The color
mapused, is not linear;most of the color shownhas small values close to
zero (white), and someblue/red regions exceed themaximumvalues on
the color bar. We observe a downscale transfer in the current south of
Florida, as theGulf Stream turns northward, possibly indicative of eddy
shedding or even just the small scale associated with the sharp turn in
the trajectory. We also observe a strong (dark blue) upscale transfer in
the Gulf Stream core east of Florida and the Carolinas. This persists
well beyond the separation point (Cape Hatteras), indicating that en-
ergy is transferred from mesoscale eddies into the Gulf Stream, accel-
erating and focusing the current. Flanking both sides of this (dark blue)
core, we see downscale transfer (red) most probably associated with
barotropic instabilities resulting from strong shear. Overall, an upscale
transfer dominates in the Gulf Stream, in accordance with QG. A
similar pattern, though not as pronounced, exists in the North Brazil
Current. The (shallow) North Equatorial Current, which in our simu-
lation is around 58N, exhibits an upscale energy transfer.

FIG. 9. As in Fig. 8, but at 100-m depth. We notice in the Gulf
Stream a pattern similar to that at the surface. In fact, almost the exact
red/blue patch patterns that appear at the Gulf Stream surface appear
at 100- and 500-m depth (see next Fig. 10), suggesting that P‘(x), as
a scalar field, is depth independent at high latitudes.On theother hand,
we notice that there is a downscale transfer of energy in theEquatorial
Countercurrent, which in our simulation, is approximately at 08 and
100-m depth, indicating an obvious departure from the QG model.
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Mesoscale eddies energize the Gulf Stream. 
Can we say more on how and where?

The eddy momentum feedback



A very brief overview of the TWA framework

•  : the thickness-weighted averaged (TWA) 

velocity.


•   is the ensemble mean.


• : the isopycnal thickness.


•  : the diapycnal velocity.


•  : the Montgomery potential.

û ( =
σu
σ )

( ⋅ )

σ ( = ζb̃)

ϖ

m ( = ϕ − bζ)
Young (2012); Ringler et al. (2017)

isopycnal
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southern extent of 5� and from our analysis and use the last five years of output (2008-165

2012) to avoid e↵ects from the open boundary conditions and sponge layer (Figure 1),166

and to maximize the intrinsic variability amongst the ensemble members respectively.167

3 Theory and implementation of thickness-weighted averaging168

The ocean is a stratified fluid, and the circulation and advection of tracers tend to169

align themselves along the stratified density surfaces. Hence, the most natural way to170

understand the circulation is to consider the variables in a thickness-weighted form and171

the residual-mean flow rather than the Eulerian mean flow. We leave the detailed deriva-172

tion of the TWA framework to Young (2012) and here, only provide a brief summary;173

the primitive equations in geopotential coordinates are first transformed to buoyancy co-174

ordinates upon which a thickness weighting and ensemble averaging along constant buoy-175

ancy surfaces are applied to obtain the TWA governing equations. Following the nota-176

tion by Young (2012) and Ringler et al. (2017), the TWA horizontal momentum equa-177

tions in the buoyancy coordinate system (t̃, x̃, ỹ, b̃) are:178

ût̃ + ûûx̃ + v̂ûỹ + $̂ûb̃ � fv̂ +mx̃ = �e1 · (r̃ ·E) + X̂ (1)179

180

v̂t̃ + ûv̂x̃ + v̂v̂ỹ + $̂v̂b̃ + fû+mỹ = �e2 · (r̃ ·E) + Ŷ (2)181

where (·) and c(·) def= �
�1

�(·) are the ensemble-mean and TWA variables respectively where182

�(= ⇣b̃) is the thickness and ⇣ the depth of an iso-surface of buoyancy. The subscripts183

denote partial derivatives. The Montgomery potential is m = � � b̃⇣ where � is the184

dynamically active part of hydrostatic pressure. The vectors e1 = i + ⇣ x̃k and e2 =185

j + ⇣ ỹk form the basis vectors spanning the buoyancy horizontal space where i, j and186

k are the Cartesian geopotential unit vectors (Young, 2012), and E is the E-P flux ten-187

sor described in detail in Section 4.1. Although each ensemble member has an individ-188

ual basis (e1, e2), the E-P flux divergence yields no cross terms upon averaging as the189

TWA operator commutes with the divergence of E (for mathematical details, see Sec-190

tion 3.4 in J. R. Maddison & Marshall, 2013); this allows for the tensor expression in equa-191

tions (1) and (2). X and Y are the viscous and forcing terms.192

One subtle yet important point involves the buoyancy coordinate (b̃) for a realis-193

tic, non-linear equation of state (EOS) for density (Jackett & Mcdougall, 1995). The anal-194

ysis in Young (2012) implicitly assumes a linear EOS. With a realistic EOS the verti-195

cal coordinate can no longer “naively” be defined by potential density for example, and196

–7–

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

southern extent of 5� and from our analysis and use the last five years of output (2008-165

2012) to avoid e↵ects from the open boundary conditions and sponge layer (Figure 1),166

and to maximize the intrinsic variability amongst the ensemble members respectively.167

3 Theory and implementation of thickness-weighted averaging168

The ocean is a stratified fluid, and the circulation and advection of tracers tend to169

align themselves along the stratified density surfaces. Hence, the most natural way to170

understand the circulation is to consider the variables in a thickness-weighted form and171

the residual-mean flow rather than the Eulerian mean flow. We leave the detailed deriva-172

tion of the TWA framework to Young (2012) and here, only provide a brief summary;173

the primitive equations in geopotential coordinates are first transformed to buoyancy co-174

ordinates upon which a thickness weighting and ensemble averaging along constant buoy-175

ancy surfaces are applied to obtain the TWA governing equations. Following the nota-176

tion by Young (2012) and Ringler et al. (2017), the TWA horizontal momentum equa-177

tions in the buoyancy coordinate system (t̃, x̃, ỹ, b̃) are:178
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where (·) and c(·) def= �
�1

�(·) are the ensemble-mean and TWA variables respectively where182

�(= ⇣b̃) is the thickness and ⇣ the depth of an iso-surface of buoyancy. The subscripts183

denote partial derivatives. The Montgomery potential is m = � � b̃⇣ where � is the184

dynamically active part of hydrostatic pressure. The vectors e1 = i + ⇣ x̃k and e2 =185
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A 24-member ensemble simulation

• No. of ensemble members: .


• Resolution: ; Duration: 50 years (1963-2012).


• Model: MITgcm; Basin: North Atlantic.


• Surface boundary condition: partially air-sea coupled.


• Lateral boundary condition: relaxation and radiation 
conditions.

24

1/12∘

Thin lines: each ensemble member
Thick lines: ensemble mean

Domain-averaged kinetic energy and potential temperature



Results on January 3, 2008

• Focus on an isopycnal whose 
ensemble-mean depth  is 
below the ensemble-mean 
mixed-layer depth .


• The isopycnal shoals drastically 
across the separated Gulf 
Stream.

(ζ)

(MLD)

Longitude Longitude

La
tit

ud
e

TWA kinetic energy (( ̂u2 + ̂v2)/2)

MLD ζ(b̃)



The eddy feedback onto the mean flow

• The net eddy feedback onto the (TWA) mean fields are 
encapsulated in the Eliassen-Palm flux  divergence.


• For an eddy closure, it shifts the focus from the 
buoyancy equation (GM) to the momentum equations.

(E)

If we can parametrize , we have a 
physically consistent eddy closure scheme which 
represents the eddy buoyancy & momentum fluxes.

e ⋅ (∇ ⋅ E)
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where (·) and c(·) def= �
�1

�(·) are the ensemble-mean and TWA variables respectively where182

�(= ⇣b̃) is the thickness and ⇣ the depth of an iso-surface of buoyancy. The subscripts183

denote partial derivatives. The Montgomery potential is m = � � b̃⇣ where � is the184

dynamically active part of hydrostatic pressure. The vectors e1 = i + ⇣ x̃k and e2 =185
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j + ⇣ ỹk form the basis vectors spanning the buoyancy horizontal space where i, j and186

k are the Cartesian geopotential unit vectors (Young, 2012), and E is the E-P flux ten-187

sor described in detail in Section 4.1. Although each ensemble member has an individ-188

ual basis (e1, e2), the E-P flux divergence yields no cross terms upon averaging as the189

TWA operator commutes with the divergence of E (for mathematical details, see Sec-190

tion 3.4 in J. R. Maddison & Marshall, 2013); this allows for the tensor expression in equa-191

tions (1) and (2). X and Y are the viscous and forcing terms.192

One subtle yet important point involves the buoyancy coordinate (b̃) for a realis-193

tic, non-linear equation of state (EOS) for density (Jackett & Mcdougall, 1995). The anal-194

ysis in Young (2012) implicitly assumes a linear EOS. With a realistic EOS the verti-195

cal coordinate can no longer “naively” be defined by potential density for example, and196

–7–



Can we parametrize the Eliassen-Palm flux divergence?

• The Eliassen-Palm flux divergence is directly related to the 
eddy Ertel potential vorticity (PV) flux .


• This primes us to connect the Eliassen-Palm flux 
divergence to the large-scale Ertel PV.


• We relate the eddy Ertel PV flux to the local-gradient flux of 
the mean Ertel PV  via an anisotropic eddy diffusivity 
tensor .

(FΠ)

(Π#)
(K)

manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Equations (1), (2) and (13) imply that if we are able to parametrize the eddy Ertel PV192

flux via the mean Ertel PV field, we have a solution for the eddy closure problem.193

While it is tempting to directly infer the eddy di↵usivity from eqn. (12), assum-

ing an isotropic di↵usivity for an anisotropic flow as in our realistic simulation is a poor

approximation (Smith & Gent, 2004; Ferrari & Nikurashin, 2010; Fox-Kemper et al., 2013).

We, therefore, take the approach of estimating the eddy di↵usivity tensor (K) from a

least-squares best fit to (Plumb & Mahlman, 1987; R. Abernathey et al., 2013; Bach-

man & Fox-Kemper, 2013; Balwada et al., In Prep.):
0
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⇧#
x̃ ⇧#

ỹ
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. (14)

Although there is some ambiguity regarding the rotational component of the eddy fluxes194

(sometimes referred to as the gauge freedom; Gri�es, 2018), eqn. (13) makes the case195

for parametrizing the total eddy PV flux, as opposed to solely its divergent component,196

when formulating a closure scheme. The assumption that goes into eqn. (14) is that the197

eddy flux of temperature, salinity and Ertel PV all behave statistically in a similar man-198

ner (Bachman et al., 2015). Since they are all active tracers, we would expect this as-199

sumption to hold to a good degree.200

The least-square fit can be estimated as K = G+F where G+ is the Moore-Penrose201

psuedo inverse of G for each data point (Bachman et al., 2015). The gradients of the mean202

field, however, tended to be noisy due to errors accumulating from the remapping pro-203

cess (eqn. (5)). Therefore, we applied a convolutional spatial smoothing to the mean fields204

(✓̂, ŝ,⇧#) prior to taking the gradients and eddy terms (i.e. each element in F) with a205

3⇥3 median filter in the horizontal grid points. The spatial smoothing can be consid-206

ered similar to a numerical convergence of the fields with an increase in the number of207

ensemble members. Each row in F and G was then normalized by horizontal median of208

the magnitude of each eddy fluxes (e.g. median(|[u00✓00|)�1[u00✓00, median(|[u00✓00|)�1r̃h✓̂)209

prior to the inversion so that all three tracers had roughly equal weighting. We further210

imposed a local smoothness condition on the di↵usivities, i.e. (x̃x̃,ỹỹ) ⇠ (0, 0) per211

element in K (details are given in Appendix C; eqn. (C6)).212

From Fig. 4, it is evident that the equatorial region contributes little to the Gulf213

Stream, so we will focus on north of 20N in this section. Figure 5a,d shows the diagnosed214
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Can we parametrize the Eliassen-Palm flux divergence?
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• The Eliassen-Palm flux divergence, which is directly 
related to the eddy PV flux, encapsulates the net eddy 
feedback onto the mean flow.


• The eddy PV flux can be related to the TWA field as an 
active tracer.


• The  diffusivity tensor , which provides a 
closure for the eddy PV flux, single-handedly includes 
the information of eddy momentum fluxes in addition 
to bringing the GM and Redi diffusivities together.


• For a prognostic closure scheme, we would need to 
inform the “ ”s via the (resolved?) TWA field.

2 × 2 K

κ

Summary and future work



(Extra slide) Defining the buoyancy coordinate for a realistic EOS

With a realistic equation of state (EOS) the vertical coordinate 
cannot “naively” be defined by potential density  as the 

pressure anomaly  does not 

translate to a body force in buoyancy coordinates, i.e. 
. We, therefore, argue for the use of in-situ density 

anomaly  where  is the in-situ density and  is 

a function of only depth. The buoyancy coordinate can then be 
defined as  which removes a large portion of 

compressibility; the iso-surfaces of  become close to neutral 
surfaces. The formulation of  is analogous to where the 
buoyancy reduces to  for a linear EOS.

(ρθ)

(ϕ = ∫ − gρ−1
0 (ρθ − ρ0)dζ)

∇hϕ ≠ ∇̃hm
δ ( = ρ − ρ

∼
(ζ)) ρ ρ

∼

b̃ = − gρ−1
0 δ

b̃
b̃

b̃ = − gρ−1
0 (ρ − ρ0)



(Extra slide) The Eliassen-Palm flux
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depth at which the potential density computed from ensemble-mean temperature and164

salinity fields increased by 0.03 kg m�3 from the density at 10 m depth (de Boyer Montégut165

et al., 2004). The mean kinetic energy fields (K# def
= |û|2; Fig. 2d) show the character-166

istic features of the Gulf Stream, North Brazil Current and equatorial undercurrent. The167

mean Rossby number (Ro#
def
= (v̂x̃ � ûỹ)f�1) shown in Fig. 2e is smaller than unity168

except for near the equator where the Coriolis parameter becomes small, indicating that169

over most of the North Atlantic basin, the mean flow in the interior is in quasi-geostrophic170

(QG) balance. The kinematics of discretizing the gradients in buoyancy coordinates are171

given in Appendix C. We now move on to examine the eddy feedback onto the mean flow.172

173

4.1 The Eliassen-Palm flux tensor174

The E-P flux tensor (E) in the TWA framework is

E =

0

BBBB@
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where (·)00 = (·) � c(·) and (·)0 = (·) � (·) are the residual of instantaneous snapshot

outputs from the TWA and ensemble mean respectively (Maddison & Marshall, 2013;

Aoki, 2014; Ringler et al., 2017). The two are related via the quasi-Stokes velocity (Greatbatch,

1998; McDougall & McIntosh, 2001):

u00 = u� u�

�
= u+ u0 � (u+ u0)(� + �0)

�

= u0 +
u0�0

�
.

We show each term in eqn. (7) in Fig. 3. The Reynolds stress term [u00v00 drives barotropic175

instability (e.g. Vallis, 2017, Chapter 15 in their book) and the eddy momentum flux terms176

du002 in Fig. 3b,e are responsible for fluxing momentum back into the mean flow, i.e. ac-177

celerate or decelerate the Gulf Stream. The interfacial form stress (⇣ 0r̃hm0; Fig. 3c,f)178

responsible for baroclinic instability is ”deceivingly” orders of magnitude smaller than179

the other terms. It is important to keep in mind, however, that it is the divergence of180

the E-P flux and not the flux itself that goes into the momentum equation, and the hor-181

izontal (r̃h) and vertical gradient (@b̃) di↵er by roughly O(106).182

–8–

•  : the eddy velocity.


• : the residual from the ensemble 
mean.

u′ ′ ( = u − û)

( ⋅ )′ ( = ( ⋅ ) − ( ⋅ ))
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• Each column is laid 
out so that the sum of 
the first three rows 
sum up to the E-P flux 
divergence shown in 
the bottom row.


• The terms associated 
with eddy momentum 
flux and baroclinic 
instability tend to 
cancel each other out.

(Extra slide) E-P flux divergence on Jan. 3, 2008



φC = arccos[ FC ⋅ GC

|FC | |GC | ]

0 π /4 π /2 3π /4 π

(Extra slide) Diffusivity tensor



(Extra slide) Temperature parametrization



(Extra slide) Salinity parametrization



Jan. 18, 2012 Jul. 11, 2012 Sep. 24, 2012

(Extra slide) Correlation and error of parametrization

∑ [(FC − ⟨FC⟩)(Fparam
C − ⟨Fparam

C ⟩)]

∑ (FC − ⟨FC⟩)2 ∑ (Fparam
C − ⟨Fparam

C ⟩)2

|FC − Fparam
C |

|FC |
; Fparam

C = GC ⋅ KC


