The discrete normal modes of quasigeostrophic theory

Adapted from:

Yassin, H., in prep.: Normal Modes with Boundary Dynamics.

Yassin, H., and Griffies, S. M., in prep.: On the Discrete Normal Modes of Quasigeostrophic Theory.

(1) Consider perturbations to a background state with no **Recipe:** background shear. (2) We obtain an eigenvalue problem in some space \mathcal{F} . (3) The normal modes are the resulting vertical structures. They form a basis of \mathcal{F} .

In a two-layer fluid: $\mathscr{F} = \mathbb{C}^2$, (a two dimensional space).

Barotropic mode

Recipe for normal modes

Baroclinic mode

What mode does the altimeter signal reflect?

Vertical decomposition of QG states into "normal modes" plays an important role in physical oceanography (e.g., Charney 1971, Wunsch 1997, Smith & Vallis 2001, Lapeyre 2009).

 \mathcal{D}

Wunsch (1997) — Most energy is in the zeroth and first baroclinic modes. The altimeter signal corresponds to *thermocline motion*.

Lapeyre (2009) — The baroclinic modes are unable to represent surface buoyancy and so are **incomplete**.

Altimeter signal reflects surface-trapped SQG motion.

Contents

1. The Quasigeostrophic Phase Space

2. The Baroclinic Modes

3. Complete Bases for Quasigeostrophic Theory

Potential Vorticity Densities

 \mathbf{PV} (m^3s^{-1})

The Quasigeostrophic Phase Space

PV distribution: $\mathfrak{Q}(x, y, z, t) =$ (Bretherton 1966)

5

QG Phase Space: The space of all possible QG states.

PV perspective:

Streamfunction perspective: The space of all functions ψ induced by \mathfrak{Q} .

$$= Q(x, y, z, t) + \sum_{i=1}^{2} R_i(x, y, t) \,\delta(z - z_i)$$

The space of all distributions \mathfrak{Q} .

Vertical Structure Phase Space

In a doubly periodic domain: Σ

The vertical structure of the PV distribution is

 $\mathfrak{Q}_k(z,t) = Q_k(z,t)$

 $\mathbf{Q}(x, y, z, t) = \mathbf{Q}_{k}(z, t) e^{i(k_1 x + k_2 y)}$

$$t) + \sum_{i=1}^{2} R_{ik}(t) \,\delta(z - z_i) \,.$$

Vertical Structure Phase Space

In a doubly periodic domain:

7

The vertical structure of the PV distribution is $\mathbf{Q}_{k}(z,t) = Q_{k}(z,t)$

 R_{ik} is an element of \mathbb{C} — where \mathbb{C} is the space complex number.

The space of all possible vertical structures in QG is

 $\mathbf{Q}(x, y, z, t) = \mathbf{Q}_{k}(z, t) e^{i(k_1 x + k_2 y)}$

$$t) + \sum_{i=1}^{2} R_{ik}(t) \,\delta(z - z_i) \,.$$

- $Q_k(z)$ is an element of L^2 where L^2 is the space of square-integrable functions on $[z_1, z_2]$

 - $L^2 \oplus \mathbb{C} \oplus \mathbb{C}$.

1. The Quasigeostrophic Phase Space

2. The Baroclinic Modes

3. Complete Bases for Quasigeostrophic Theory

Contents

The Baroclinic Modes

Vertical structure of Rossby waves in a quiescent ocean with no topography.

9

(Assuming $\omega \neq 0$) $\omega = -\frac{\beta k_1}{k^2 + \lambda}$

10

The Baroclinic Modes

Vertical structure of Rossby waves in a quiescent ocean with no topography.

(Assuming $\omega \neq 0$) $\omega = -\frac{\beta k_1}{k^2 + \lambda}$

The modes $\{\hat{\psi}_n\}_{n=0}^{\infty}$ and $\{\hat{w}_n\}_{n=0}^{\infty}$ form an orthonormal basis of L^2 .

But the space of all QG vertical structures is $L^2 \oplus \mathbb{C} \oplus \mathbb{C}$.

So we are missing two degrees of freedom

General Linear Solution

Given a vertical structure $\Psi(z)$ with $d\Psi(z_i)/dz = 0$, then

$$\psi(z,t) = \sum_{n=0}^{\infty}$$

Assumptions: Infinitesimal (linear) perturbations to a quiescent ocean. No buoyancy gradients at the boundaries. No topography.

- $\langle \Psi, \hat{\psi}_n \rangle \hat{\psi}_n(z) e^{-i\omega_n t}$

Physical normal mode

Baroclinic Modes as a Basis

bases for QG theory.

Suppose we have a QG state with $\Psi(z,t)$ and W(z,t). Define n=0When do we have $\Psi = \Psi^{exp}$ and $W = W^{exp}$?

We can instead try to use the baroclinic modes, $\{\hat{\psi}_n\}_{n=0}^{\infty}$ and $\{\hat{w}_n\}_{n=0}^{\infty}$, as a

Expansions and the missing degrees of freedom

Given an arbitrary vertical structure $\Psi(z)$, we have

15

 $\Psi(z) =$

Volume potential vorticity: Differentiate the series in the *interior* for $z \in (z_1, z_2)$. $Q(z) = -\sum \left(\right.$ n=0

potential vorticities R_1 and R_2 in the projection process.

$$\sum_{n=0}^{\infty} \Psi_n \hat{\psi}_n(z) \, .$$

$$(k^2 + \lambda_n) \Psi_n \hat{\psi}_n(z)$$
.

The series is not differentiable at $z = z_1, z_2$, hence we have *lost* the surface

16

Contents

1. The Quasigeostrophic Phase Space

2. The Baroclinic Modes

3. Complete Bases for Quasigeostrophic Theory

The Generalized Rhines Modes

Vertical structure of Rossby waves in a quiescent ocean with prescribed boundary buoyancy gradients / topography.

$$-\frac{d}{dz}\left(\frac{f_0^2}{N^2}\frac{d\psi}{dz}\right) = \lambda\psi \quad \text{for} \quad z \in$$

$$-k^2 \psi + (-1)^i \gamma_i^{-1} \left(\frac{f_0^2}{N^2} \frac{d\psi}{dz} \right) = \lambda \psi \quad \text{at} \quad z =$$

17

$$\gamma_i = (-1)^{i+1} \frac{\hat{z} \cdot \left(\boldsymbol{k} \times \nabla g_i \right)}{\hat{z} \cdot \left(\boldsymbol{k} \times \nabla f \right)} = (-1)^{i+1} \frac{|\nabla g_j| k}{\beta k_x} \sin \left(\frac{\beta k_y}{\beta k_y} \right)$$

 $(\Delta \theta_i)$ where $g_i = f_0 h_i$ for topography.

(*Large* horizontal scales)

The nth mode has n zeros.

Two modes (n = 0, 1) with no zeros.

Two modes with one zero (n = 0,3). Two modes with no zeros (n = 1,2).

Expansion Properties

The generalized Rhines modes $\{\hat{\psi}_n\}_{n=0}^{\infty}$ form an orthonormal basis of $L^2 \oplus \mathbb{C} \oplus \mathbb{C}$.

Given a QG state with streamfunction $\Psi(z)$, then $\Psi(z) = \sum_{n=0}^{\infty} \Psi_n \hat{\psi}_n(z) \qquad \text{and} \qquad \frac{d\Psi(z)}{dz} = \sum_{n=0}^{\infty} \Psi_n \frac{d\Psi(z)}{dz}$ regardless of what boundary conditions $\Psi(z)$ satisfies.

$$\Psi(z), \text{ then}$$

$$\frac{\Psi(z)}{dz} = \sum_{n=0}^{\infty} \Psi_n \frac{d\hat{\psi}_n(z)}{dz} \quad \text{on} \quad z \in [z_1, z_2]$$

The misleading nature of the baroclinic modes

Consider a realistic ocean with strong surface QG dynamics and weak interior dynamics.

A projection onto the baroclinic modes (as in Wunsch 1997) may give the misleading impression that the motion is all due to the volume PV Q.

Summary

prefer one set over another.

3. In a non-linear ocean, modal decompositions do not provide any additional physical insight and can be highly misleading.

unique decomposition into normal modes in non-linear theory.

- 1. The baroclinic modes are *incomplete*. Information is *lost* in the projection process.
- 2. There are infinitely many *complete* modes for QG theory. No physical reason to

- 4. The question of "what mode the altimeter signal reflects" is *ill-posed*. There is no

