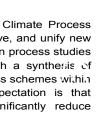
climate model biases in ocean currents, stratification, and transport.

- New York University (Supervised by Laure Zanna): Unification of buoyancy and tracer closures; Assessment and parameterization of vertical energy structure; Parameterization of the grey zone. More information and application at https://apply.interfolio.com/68119.
- University of Colorado, Boulder (Supervised by Ian Grooms): Assessment of 2D eddy energy equation; parameterization of eddy energy transport; parameterizing dissipation in the eddy energy equation. More information and application are at https://iobs.colorado.edu/iobs/JobDetail/?lobId=20799.
- Woods Hole Oceanographic Institution (Supervised by Sylvia Cole): Characterizing scale-dependent EKE from observations; quasi-3D eddy buoyancy and momentum statistics from observations; analysis of vertical eddy structure in observations; synthesis of observations. More information and application are at

https://careers.whoi.edu/opportunities/view-all-openings/science-research/ (position 19-08-09).

nt of research for positions in cation to each


or any of the

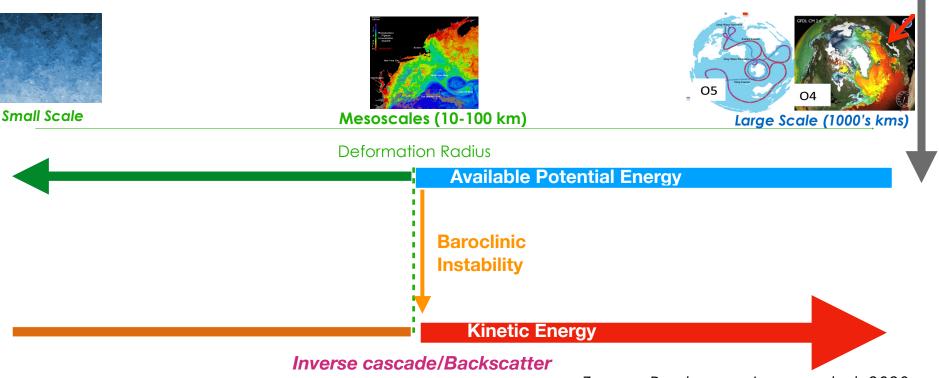
Princeton University (Supervised by Alistair Adcroft): Implementation and assessment of extant
parameterizations of mesoscale eddies in process, idealized and global ocean models;
consistent and optimized formulation of closures; development and assessment of improved
and unified closures; evaluation of new closures in climate models. More information and
application at https://www.princeton.edu/acad-position/13701.

GFDL NCAR ·Los Alamos

Energy (CPT)

EKERGY CPT

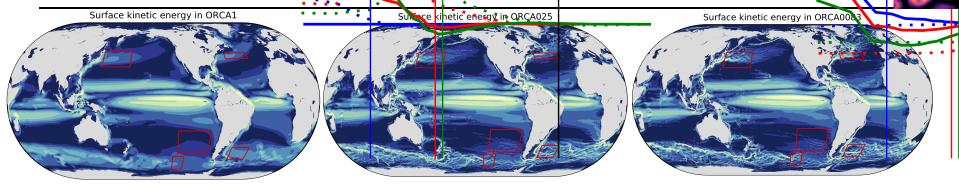
Boulder


tracer closures;

https://ocean-eddy-cpt.github.io/

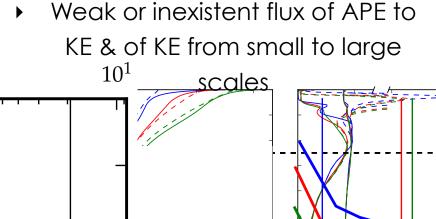
Energy Cycle & Mesoscale Eddies

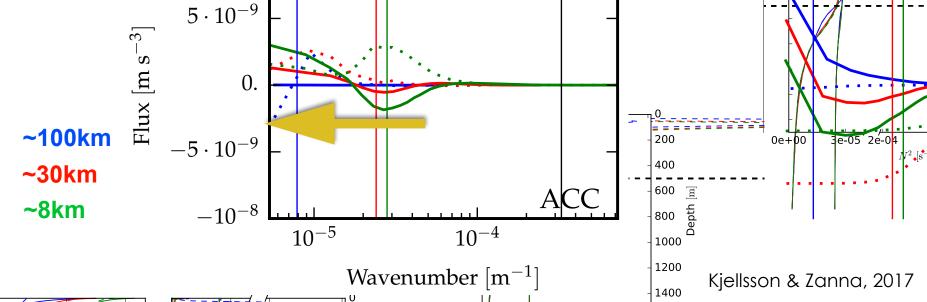
- Sources, sinks and transfer of energy across scales are key to maintain the circulation & transport in the ocean (e.g., Wunsch & Ferrari 2004; Ferrari & Wunsch 2009)
- Mesoscale eddies are a major player in the energy cycle:
 - ➡ extract energy from the mean flow
 - ➡ form the bulk of the kinetic energy in the ocean
 - ➡ transfer of kinetic energy across scales


Zanna, Bachman, Jansen et al. 2020 adapted from Salmon, 1998 & Vallis, 2006

Wind + Buoyancy

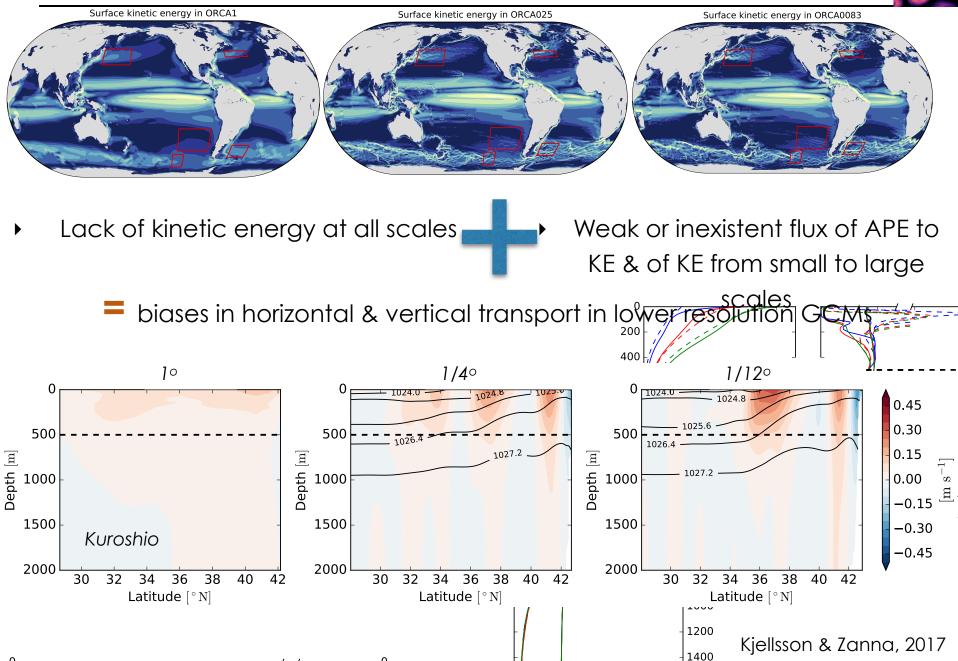
Work


Symptoms of missing mesoscale eddy energy in GGAs

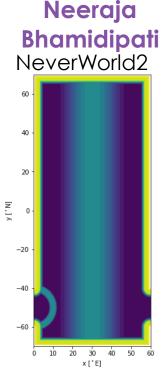


 10^{2}

• Lack of kinetic energy at all scales

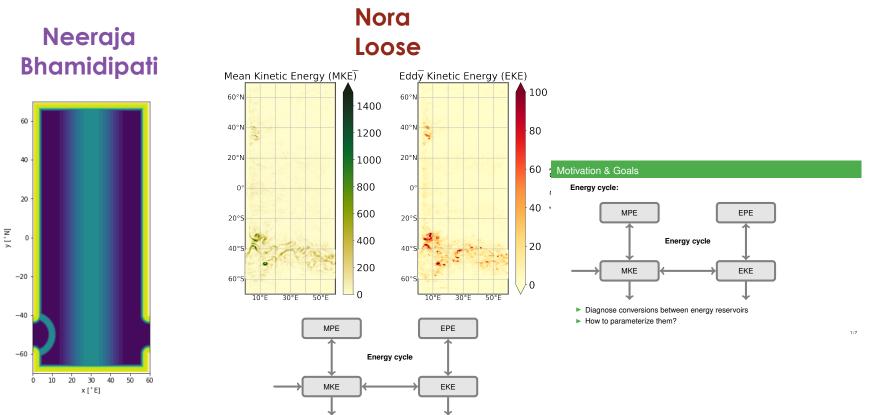

 10^{-8} 10^{3}

Symptoms of missing mesoscale eddy energy in GCMs

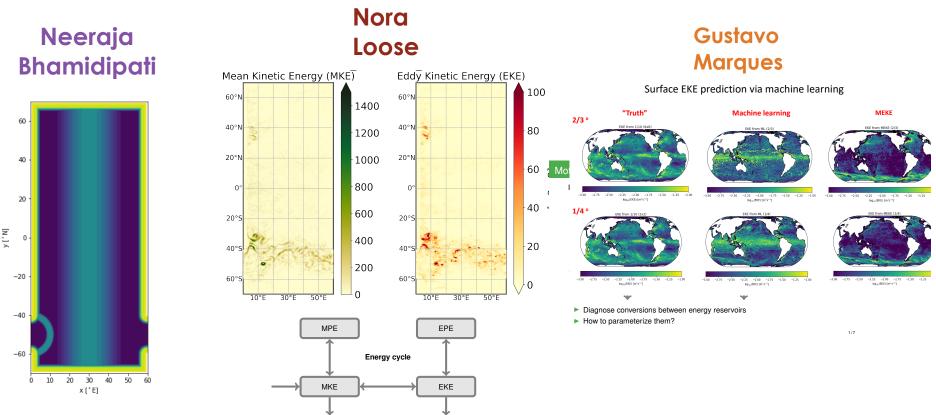


- How:
 - Evaluate existing & future parameterizations of ocean mesoscale

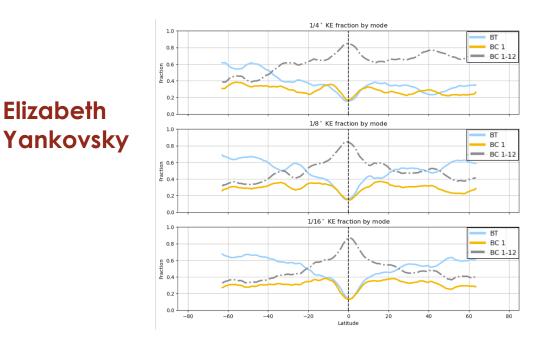
Parameterization of ocean eddies: Potential vorticity mixing, end and Arnold's first stability theorem	erçotion
David P. Marshall ^{a,*} , Alistair J. Adcroft ^b	Energy budget-based backscatter in an eddy permitting primitive equation model
Scale-aware deterministic and stochastic parametrizations of eddy-mean flow interaction	Malte F. Jansen ^{a,b,c,*} , Isaac M. Held ^{b,c} , Alistair Adcroft ^{b,c} , Robert Hallberg ^{b,c}
Laure Zanna ^{a,*} , PierGianLuca Porta Mana ^b , James Anstey ^a , Tomos David ^a , Thomas B	The GM+E closure: A framework for coupling backscatter with the Gent and
	McWilliams parameterization
A scale-aware subgrid model for quasi-geostrophic turbulenc	Scott D. Bachman * National Center for Atmospheric Research, Boulder, CO, USA
Scott D. Bachman ¹ ⁽¹⁾ , Baylor Fox-Kemper ² ⁽¹⁾ , and Brodie Pearson ²	
Effects of vertical variations of thickness diffusivity in an ocean general circulation model	[©] Implementation of a Geometrically Informed and Energetically Constrained Mesoscale Eddy Parameterization in an Ocean Circulation Model J. MAK
Gokhan Danabasoglu ^{a,*} , John Marshall ^b Uni	fied CPT-eddy energy parametrization (202?)



- How:
 - Evaluate existing & future parameterizations of ocean mesoscale in a new idealized configuration — NeverWorld 2 — & global models

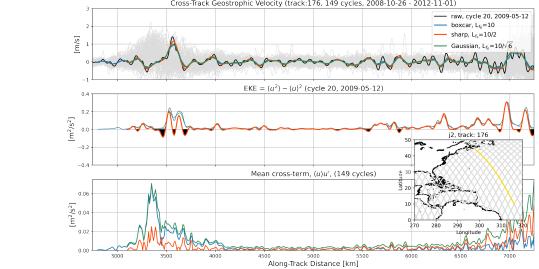


- How:
 - Evaluate existing & future parameterizations of ocean mesoscale in a new idealized configuration — NeverWorld 2 — & global models



- How:
 - Evaluate existing & future parameterizations of ocean mesoscale in a new idealized configuration — NeverWorld 2 — & global models

- How:
 - Evaluate existing & future parameterizations of ocean mesoscale in a new idealized configuration — NeverWorld 2 — & global models
 - Unify closures of momentum & buoyancy through energy pathways



Increase the fidelity of the large-scale transport representation in IPCC-class models by unifying energetics & mesoscale eddy closures of buoyancy & momentum for a robust resolution-, scale- & flow-aware implementation

- How:
 - Evaluate existing & future parameterizations of ocean mesoscale in a new idealized configuration — NeverWorld 2 — & global models
 - Unify closures of momentum & buoyancy through energy pathways
 - Curate observational diagnostics for model evaluations and constraining parameterizations
 Cross-Track Geostrophic Velocity (track:176, 149 cycles, 2008-10-26 - 2012-11-01)

Jake Steinberg

Oc

Increase the fidelit unifying energetics

Multiple postdoctoral research positions are available as part of a multi-institution Climate Process Team (CPT) on Ocean Transport and Eddy Energy. The CPT aims to survey, improve, and unify new advances in energy-, flow-, and scale-aware parameterizations of mesoscale eddies, in process studies and global ocean models; constrain parameters and parameterized fluxes through a synthesis of up-to-date observations of ocean energetics and transport; and implement and assess schemes within IPCC-class climate models at NCAR, NOAA-GFDL, and DOE-LANL. The expectation is that modernized, energetically-consistent mesoscale eddy parameterizations will significantly reduce climate model biases in ocean currents, stratification, and transport.

- New York University (Supervised by Laure Zanna): Unification of buoyancy and tracer closures; Assessment and parameterization of vertical energy structure; Parameterization of the grey zone. More information and application at <u>https://apply.interfolic.com/68119</u>.
- University of Colorado, Boulder (Supervised by Ian Grooms): Assessment of 2D eddy energy eouation; parameterization of eddy energy transport; parameterizing dissipation in the eddy energy eque ion. More intornuction and application are at https://bobs.colorado.edu//obs/labbetail/?lob
- Woods Hole Oceanographic Institution (Supervised by Sylvia Cole): Characterizing analo-docondent EVE from observations; guasi-80 elify biogrammy and momonitum statistics from observational; snayes of variest edity structure is observationa; synthesis of observations. More information and application are at
- https://careers.whole.ddu/opportunities/view-all-opening/science-research/ (position 19-08-09).
 Princetin: University (Subarvisor) by Alistair Adorof): Implementation and assessment of extant start eterizations of mechanisms, itele/zed und ght allocen in todat; consistent and optimized formulation of closures; development and assessment of improved and unified closures; evaluation of new closures in climate models. More information and application at https://www.princeton.edu/acad-positions/position/13701.

GFDL NCAR ·Los Alamos

ΦΦ

Climate Process Team on Ocean Transport and Eddy Energy

National Oceanographic and Atmospheric Administration and the National Science Foundation

octoral research positions are available as part of a multi-institution Climate Process in Ocean Transport and Eddy Energy. The CPT aims to survey, improve, and unify new mergy-, flow-, and scale-aware parameterizations of mesoscale eddies, in process studies eaan models; constrain parameters and parameterized fluxes through a synthesis of aervations of ocean energetics and transport; and implement and assess schemes within imate models at NCAR, NOAA-GFDL, and DOE-LANL. The expectation is that energetically-consistent mesoscale eddy parameterizations will significantly reduce biases in ocean currents, stratification, and transport.

ork University (Supervised by Laure Zanna): Unification of buoyancy and tracer closures;

Energy (CPT)

EKERGY

ation in IPCC-class models by ncy & momentum for a robust mentation

.github.io/

nt of research or positions in

cation to each or any of the

on between observationalists and n modelers at GFDL, NCAR, LANL

