AIR-SEA COUPLING SHAPES NORTH AMERICAN HYDROCLIMATE RESPONSE TO LGM ICE SHEETS

Dillon Amaya, Alan Seltzer, Kris Karnauskas, Juan Lora, Xiyue Zhang, and Pedro DiNezio

CESM Paleoclimate Working Group Meeting February 8, 2021

LGM HYDROCLIMATE

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 Meters Above Sea Level

LGM HYDROCLIMATE

Summer stationary waves in LGM HadCM3 single forcing runs

Roberts et al. (2019)

Research questions:

- Mechanical (tall) vs thermodynamic (bright) influence of continental ice sheets on North American west coast hydroclimate?
 - Influence on North Pacific jet and downstream rainfall.
- 2. What role do air-sea interactions and/or ocean dynamics play in modulating that response?

CESMI EXPERIMENTS

*See DiNezio et al. (2018) Science Advances, for complete model details

Pre-industrial Control (Ctl)

Full LGM Climate (LGM-Full)

Surface Height

TOA Upward SW

Green Mountain (GM; Mechanical forcing)

White Mountain (WM; Mech. + Therm. forcing)

Surface Height

40	80	120	160	200
W m ²				

TOA Upward SW

CESMI EXPERIMENTS

White Mt and Green Mt experiments across hierarchy of ocean model configurations

*All runs appropriately spun-up

AGCM-only

Forced at lower boundary by SSTs Interactive mixed layer with air-sea heat exchange

Slab Ocean Model (SOM)

correction

Η λΕ

R

atmosphere

ocean

Dynamical Ocean Model (DOM)

Fully dynamical ocean circulation

GREEN MOUNTAIN

Mechanically forced shift of the N. Pacific jet, shift in west coast hydroclimate

GREEN MOUNTAIN

Including ocean-atmosphere interactions leads to opposite result

GREEN MOUNTAIN

Including ocean-atmosphere interactions leads to opposite result

DOM SST response

Mechanical + thermodynamic ice sheet effects reproduce LGM-Full

Thermodynamic forcing and subsequent air-sea interactions critical

Thermodynamic forcing and subsequent air-sea interactions critical

Amaya et al. in review

DOM SST response

Summer large-scale atmospheric circulation uncoupled from the ocean

DOM SST response

SUMMARY

Email: dillon.amaya@colorado.edu

QUESTIONS?

Amaya DJ, AM Seltzer, KB Karnauskas, JM Lora, X Zhang, and P DiNezio. <u>Air-sea feedbacks shape North American</u> <u>hydroclimate response to ice sheets during the Last Glacial Maximum</u>. *Under Review*. Pre-print at www.dillonamaya.com

EXTRA SLIDES

