Explaining and constraining the spread in projections of Arctic sea ice

Dave Bonan

Environmental Science and Engineering, California Institute of Technology

Tapio Schneider (Caltech / JPL) Ian Eisenman (Scripps) Marika Holland (NCAR) Flavio Lehner (Cornell / NCAR) Robb Wills (UW)

Arctic sea ice has undergone striking changes over satellite record

Schweiger et al., (2011); Perovich and Polashenski, (2012); Stroeve and Notz, (2018)

Uncertainty in projections of Arctic sea ice

model structure, internal variability, and emissions scenario

Hawkins and Sutton, (2009); Deser et al., (2020); Lehner et al., (2020)

Internal variability impacts wintertime projections at longer lead times

Partitioning uncertainty in regional projections of Arctic sea ice

Arctic sea ice in July, August, and September over 21st century

Partitioning uncertainty in regional projections of Arctic sea ice

Arctic sea ice in January, February, and March over 21st century

Can we reduce model uncertainty?

Reconstructing observed Arctic sea-ice area

 $A_f = A_c + \gamma \cdot (T_f - T_c)$

 Annual Arctic sea-ice area (SIA) is well approximated via an expression that determines future SIA using present SIA and the sensitivity of sea ice to Arctic temperature changes

• Captures the long-term trend, inter-annual variability, and explains over 60% of the detrended variability

Winton, (2011); Mahlstein and Knutti, (2012)

Reconstructing observed Arctic sea-ice area

 $A_f = A_c + \gamma \cdot (T_f - T_c)$

• Expression also captures the large decline of summer Arctic SIA and more muted decline of winter Arctic SIA

Winton, (2011); Mahlstein and Knutti, (2012)

Applying the linear expression to coupled climate models

 $A_f = A_c + \gamma \cdot (T_f - T_c)$

• September Arctic SIA calculated from Eq. (1) bears a strikingly similarity to GCMs

Breakdown of model uncertainty in projections of Arctic sea-ice area

 $A_f = A_c + \gamma \cdot (T_f - T_c)$

 Approximately 70-95% the intermodel variance in CMIP6 GCMs is explained by Eq. (1) across all months

Breakdown of model uncertainty in projections of Arctic sea-ice area

$$A_f = A_c + \gamma \cdot (T_f - T_c)$$

- What can we make of the inter-model spread in projections of Arctic SIA and how does each term contribute to the total uncertainty?
- If mean-state biases were reduced across GCMs in the future, how much more certain is the date of an ice-free Arctic?
- How would an emergent constraint on Arctic warming based on this expression change projections of Arctic SIA?

Breakdown of model uncertainty in projections of Arctic sea-ice area

- Approximately 70-95% the intermodel variance in CMIP6 GCMs is explained by Eq. (1) across all months
- Majority of the inter-model spread arises from present day biases in simulated Arctic SIA
- Some contribution from intermodel differences in the local sea ice sensitivity
- Remaining inter-model spread arises from model differences in Arctic warming

$$A_f = A_c + \gamma \cdot (T_f - T_c)$$

$$A_f \neq A_c + \gamma \cdot (T_f - T_c)$$

reducing mean-state biases

correcting the local sea ice sensitivity

constraining the local sea ice sensitivity

23

• Similar picture for medium-emissions scenario, but low-emissions scenario probability is reduced

- Constrained projections suggest 15-30 years sooner than unconstrained CMIP6 models
- For high-emissions, 'likely' (>66% probability) year of ice-free summers in the Arctic is around 2060
- Medium- and low- emissions scenarios paint a different picture
- 'Likely' (>66% probability) year of ice-free summers in the Arctic is around 2080 for medium-emissions scenario and 2090 for lowemissions scenarios

Summary

- Projections of Arctic sea ice are dominated by model uncertainty
- Internal variability contributes up to 60% of total uncertainty in the first few decades and influences projection uncertainty at longer lead times in the wintertime
- Influence of internal variability is seasonally and regionally dependent, contributes more in regions influenced by ocean heat transport (e.g., GIN and Barents Seas)
- A simple linear expression emulates the future evolution of Arctic sea ice as simulated by GCMs with remarkable skill
- Present day biases in SIA account for the majority of inter-model spread in projections of Arctic SIA, with warming contributing much of the rest
- Constrained projections suggest 50% probability of ice-free conditions in September 2037-2044 under high emissions
- Ice-free conditions from July to October are `likely' (> 66% probability) to occur by 2060

Questions?

dbonan@caltech.edu www.davebonan.com

- Bonan, D.B., F. Lehner, and M.M. Holland (2021): Partitioning uncertainty in projections of Arctic sea ice. *Environmental Research Letters*. 16. doi: 10.1088/1748-9326/ABE0EC
- Bonan, D.B., T. Schneider, I. Eisenman, and R.C.J. Wills: Constraining the date of a seasonally ice-free Arctic.

Partitioning uncertainty in regional projections of Arctic sea ice

Arctic sea ice in July, August, and September over 21st century

Partitioning uncertainty in regional projections of Arctic sea ice

Arctic sea ice in January, February, and March over 21st century

Comparison of probabilities using Eq. (1) and CMIP6 models

