Impact of Biomass Burning Emissions on Arctic Sea Ice Loss

Patricia DeRepentigny¹, Alexandra Jahn¹, Marika Holland², John Fasullo², Michael Mills², Simone Tilmes², Jean-François Lamarque², David Bailey², Cécile Hannay², Andrew Barrett³, and others

 ¹Department of Atmospheric and Oceanic Sciences & Institute of Arctic and Alpine Research, University of Colorado Boulder
²Climate and Global Dynamics Laboratory, National Center for Atmospheric Research
³National Snow and Ice Data Center
DeRepentigny, P. et al., to be submitted shortly.

- The Global Fire Emissions Database (GFED) from 1997-2014 was used to produced estimates of biomass burning (BB) emissions prescribed in the Coupled Model Intercomparison Project Version 6 (CMIP6).
- It is characterized by increased inter-annual variability in BB emissions, more inline with observations.

- The Global Fire Emissions Database (GFED) from 1997-2014 was used to produced estimates of biomass burning (BB) emissions prescribed in the Coupled Model Intercomparison Project Version 6 (CMIP6).
- It is characterized by increased inter-annual variability in BB emissions, more inline with observations.

12 CMIP6 models (first 3 ensemble members only) from 1850 to 2100 have been separated into a Sensitive or Non-sensitive category depending on if they exhibit an acceleration in sea ice decline from 1997-2009 that is 100% larger compared to 1978-1990.

12 CMIP6 models (first 3 ensemble members only) from 1850 to 2100 have been separated into a Sensitive or Non-sensitive category depending on if they exhibit an acceleration in sea ice decline from 1997-2009 that is 100% larger compared to 1978-1990.

12 CMIP6 models (first 3 ensemble members only) from 1850 to 2100 have been separated into a Sensitive or Non-sensitive category depending on if they exhibit an acceleration in sea ice decline from 1997-2009 that is 100% larger compared to 1978-1990.

12 CMIP6 models (first 3 ensemble members only) from 1850 to 2100 have been separated into a Sensitive or Non-sensitive category depending on if they exhibit an acceleration in sea ice decline from 1997-2009 that is 100% larger compared to 1978-1990.

Sensitivity Experiment – Removing the variability in BB emissions over the GFED era

Model Experiments

	Model Version	Forcing	# of Ensemble Members
CESIM-LE	CESM1	CMIP5	40
CESM2-CMIP5	CESM2	CMIP5	7
CESM2-CMIP6	CESM2	CMIP6	11
CESM2-BB	CESM2	CMIP6 except for BB emissions from 1997-2014	10

Half of the increased sea ice sensitivity from CMIP5 to CMIP6 in the CESM2 is due to improved BB emissions

Sea ice sensitivity to global mean surface temperature (1979-2014)

Half of the increased sea ice sensitivity from CMIP5 to CMIP6 in the CESM2 is due to improved BB emissions

Sea ice sensitivity to global mean surface temperature (1979-2014)

Half of the increased sea ice sensitivity from CMIP5 to CMIP6 in the CESM2 is due to improved BB emissions

Sea ice sensitivity to global mean surface temperature (1979-2014)

Is there a forced signal in the recent reduced rate of Arctic sea ice loss?

Is there a forced signal in the recent reduced rate of Arctic sea ice loss?

Summary

- The CESM2-CMIP6, as well as a few other CMIP6 models, simulate an acceleration in sea ice decline that coincides with the start of the GFED era, followed by a recovery until the start of the 2020s.
- We conducted a sensitivity experiment in which we removed the inter-annual variability in biomass burning emissions over the GFED period.
- The sensitivity runs show reduced Arctic warming and sea ice decline compared to the CESM2-CMIP6 when the biomass burning variability is removed.
- Half of the increase in sea ice sensitivity from CMIP5 to CMIP6 in the CESM can be attributed to the increased variability in BB emissions during the GFED era.
- There is indication of a forced signal in the recent reduced rate of Arctic sea ice loss.

Contact: patricia.derepentigny@colorado.edu